Autologous fecal microbiota transplantation can retain the metabolic achievements of dietary interventions.

Eur J Intern Med

Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Electronic address:

Published: October 2021

Background: We recently reported that autologous fecal microbiota transplantation (aFMT), derived from the time of maximal weight-loss and administrated in the regain-phase, might preserve weight loss and glycemic control in moderately obese subjects, and is associated with specific microbiome signatures. Here, we sought to explore the global effect of aFMT on adipokines, inflammatory markers and blood cholesterol and on the overall gut microbiome preservation.

Methods: In the DIRECT-PLUS weight-loss trial, abdominally obese participants were randomized to three distinct weight-loss diets. Following the expected weight loss phase (0-6 m), 90 participants were randomized to receive their personal frozen fecal microbiota or placebo oral capsules (ten 1 g-capsules over ten sessions-total=100 g) during the expected weight regain phase (8-14 m).

Results: Of the 90 participants (age=52 yr; 0-6 m weight loss=-8.3 kg), 95.6% ingested at least 80/100 oral aFMT/placebo capsules over 6 months. Overall, the gut microbiome community structure was associated with plasma levels of leptin, cholesterol and interleukin-6 at baseline and after 6 m, whereas 6 m (weight loss phase) changes in specific microbiome species associated with the dynamic of leptin and inflammatory biomarkers. Following the 8-14 m aFMT administration phase, aFMT maintained decreased levels of leptin (ΔaFMT=-3.54 ng/mL vs. Δplacebo=-0.82 ng/mL;P = 0.04), C-reactive-protein (ΔaFMT=-1.45 mg/L vs. Δplacebo=-0.66 mg/L;P = 0.009), Interleukin-6 (ΔaFMT=-0.03pg/mL vs. Δplacebo=1.11pg/mL;P = 0.03) and total cholesterol (ΔaFMT=2.2 mg/dl vs. Δplacebo=13.1 mg/dl;P = 0.04) achieved in the weight loss phase. Overall, aFMT induced a significant preservatory effect on personal gut microbiome global composition (P = 0.03;Jensen-Shannon distance), as compared to placebo.

Conclusions: aFMT treatment in the regain phase might retain weight-loss induced metabolic benefits. These findings may suggest a novel aFMT treatment approach for personal metabolic attainment preservation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejim.2021.03.038DOI Listing

Publication Analysis

Top Keywords

weight loss
16
fecal microbiota
12
gut microbiome
12
loss phase
12
autologous fecal
8
microbiota transplantation
8
specific microbiome
8
participants randomized
8
expected weight
8
regain phase
8

Similar Publications

Risk factors contributing to cardiovascular diseases (CVD) can be addressed through behavior modification, including changes in diet and physical activity. In 2021, The Wellness Institute (WI), located at Seven Oaks General Hospital, created a virtual cardiometabolic risk reduction program in response to COVID-19 pandemic public health restrictions, encompassing virtual health coaching and lifestyle education. The objective was to evaluate the acceptability, adherence, efficacy and engagement of the WI online cardiometabolic and weight loss program.

View Article and Find Full Text PDF

Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).

Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).

View Article and Find Full Text PDF

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Homeobox C4 transcription factor promotes adipose tissue thermogenesis.

Diabetes

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!