Influenza A viruses (IAVs) are common causes of respiratory infection in pigs. The objective of this study was to characterize the circulation of IAVs between weaning and market age on the basis of development of antibody response and molecular epidemiology of detected viruses. Two batches of weaned pigs were followed in the nursery and finisher barns with a sample of 81 and 75 pigs. Nasal swabs and blood samples were collected from individual pigs for virological and serological analyses. A H3N2 subtype virus, of cluster IV, was detected in Study 1, with a maximum of 97.9% identity to HA gene of viruses previously isolated in Ontario. In Study 2, a H1N1 subtype virus, of 2009 H1N1 pandemic lineage, was detected, with a maximum of 97.8% identity to HA gene of viruses previously isolated in Ontario. On the basis of HA gene, it was observed that pigs were being detected with the same virus over time. The existence of antibody titers for IAV other than the isolated one confirmed that more than one subtype can circulate in the same population. In Study 1, pigs with higher numbers of IAV detection had lower serological titers for the same virus that was confirmed to circulate in the nursery (P < 0.01). Thorough knowledge of all endemic viral strains is fundamental for development of infection and disease control, particularly in complex production systems. This may include consideration of sampling and testing strategies which could detect circulation of all IAV variants, even if they have low prevalence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059009 | PMC |
http://dx.doi.org/10.1186/s13567-021-00927-9 | DOI Listing |
Cell Rep
January 2025
Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Electronic address:
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki-Giza, Egypt.
The COVID-19 pandemic has caused significant mortality and morbidity for millions of people. Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) virus is capable of causing severe and fatal diseases. We evaluated the antiviral properties of Aspergillus tamarii SP73-EGY isolate extract against low pathogenic coronavirus (229E), Adeno-7- and Herpes-2 viruses.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China. Electronic address:
Significant efforts were currently being made worldwide to develop a tool capable of distinguishing between various harmful viruses through simple analysis. In this study, we utilized fluorescence excitation-emission matrix (EEM) spectroscopy as a rapid and specific tool with high sensitivity, employing a straightforward methodological approach to identify spectral differences between samples of respiratory infection viruses. To achieve this goal, the fluorescence EEM spectral data from eight virus samples was divided into training and test sets, which were then analyzed using random forest and support vector machine classification models.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.
Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!