AI Article Synopsis

  • Aqueous zinc metal batteries (ZMBs) are promising for grid-scale energy storage due to their safety, but dendritic growth on Zn electrodes limits their capacity.
  • Researchers found that a negatively charged porous layer (NPL) enhances Zn-ion transport, reducing dendrite formation while improving electrode performance.
  • The NPL dramatically increases the cycling stability of Zn batteries, achieving high Coulombic efficiency and long-lasting performance in full-cell configurations over numerous cycles.

Article Abstract

Aqueous zinc (Zn) metal batteries (ZMBs) are considered a promising candidate for grid-scale energy storage due to their freedom from fire hazards. However, a limited reversibility of Zn metal electrode caused by dendritic Zn growth has hindered the advent of high-capacity Zn metal batteries (>4 mAh cm ). Herein, it is reported that fast electrokinetic Zn-ion transport extremely improves the Zn metal reversibility. It is revealed that a negatively charged porous layer (NPL) provides the electrokinetic Zn-ion transport by surface conduction, and consequently impedes the depletion of Zn-ion on electrode surface as indicated by numerical simulations and overlimiting current behavior. Due to the quick Zn-ion delivery, a dendrite-free and densely packed Zn metal deposit is accommodated inside its pores. With the introduction of the NPL, the cycling stability of Zn symmetric cell is enhanced by 21 times at 10 mA cm /10 mAh cm . Average Coulombic efficiency of 99.6% is achieved over 500 cycles for electrodeposition/stripping at 30 mA cm /5 mAh cm on NPL-Cu electrode. Furthermore, a high-capacity Zn/V O full cell with the NPL exhibits an extraordinary stability over 1000 cycles at a capacity of 4.8 mAh cm .

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202008059DOI Listing

Publication Analysis

Top Keywords

metal batteries
12
aqueous zinc
8
zinc metal
8
electrokinetic zn-ion
8
zn-ion transport
8
metal
6
electrokinetic-driven fast
4
fast ion
4
ion delivery
4
delivery reversible
4

Similar Publications

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

Pt ( = 1, 3, and 4) Cluster-Modified MoSe Nanosheets: A Potential Sensing and Scavenging Candidate for Lithium-Ion Battery State Characteristic Gases.

Langmuir

January 2025

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

Realizing reliable online detection of characteristic gases (H, CH, CO, and CO) in lithium-ion batteries is crucial to maintain the safe and stable operation of power equipment and new energy storage power plants. In this study, transition metal Pt ( = 1, 3, and 4) clusters are attached to MoSe nanosheets for the first time based on density functional theory using the perfect crystalline facet modification method, and the adsorption characteristics and electronic behaviors of H, CH, CO, and CO are investigated and enhanced. The results show that Pt ( = 1, 3, and 4) is reliably chemically connected to the substrate without any significant deformation of the geometry.

View Article and Find Full Text PDF

Construction of a Heterostructured Alloy-Molybdenum Nitride Catalyst for Enhanced NH Production via Nitrate Electrolysis.

Inorg Chem

January 2025

Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China.

Here, we reported a highly efficient nitrate electroreduction (NORR) electrocatalyst that integrated alloying and heterostructuring strategies comprising FeCo alloy and MoN (FeCo-MoN/NC). Notably, the maximum NH Faraday efficiency (FE) of 83.24%, NH yield of 12.

View Article and Find Full Text PDF

Metal-air batteries are promising energy storage systems with high specific energy density and low dependence on critical materials. However, their development is hindered by slow kinetics, low roundtrip efficiency, deficient capacity recovery, and limited lifetime. This work explores the effect of cycling protocols on the lifetime of Li-O cells, and the interplay between electrolyte composition and the upper cut-off voltage during charge.

View Article and Find Full Text PDF

Unraveling the conversion mechanism toward spinel sulfides as cathode materials for Mg-ion batteries.

Phys Chem Chem Phys

January 2025

National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.

Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!