Background: The worldwide tragedy of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic vividly demonstrates just how inadequate mitigation and control of the spread of infectious diseases can be when faced with a new microorganism with unknown pathogenic effects. Responses by governments in charge of public health, and all other involved organizations, have proved largely wanting. Data infrastructure and the information and communication systems needed to deal with the pandemic have likewise not been up to the task. Nevertheless, after a year of the worldwide outbreak, hope arises from this being the first major pandemic event in history where genomic and related biosciences - relying on biomedical informatics - have been essential in decoding the viral sequence data and producing the mRNA and other biotechnologies that unexpectedly rapidly have led to investigation, design, development, and testing of useful vaccines. Medical informatics may also help support public health actions and clinical interventions - but scalability and impact will depend on overcoming ingrained human shortcomings to deal with complex socio-economic, political, and technological disruptions together with the many ethical challenges presented by pandemics.
Objectives: The principal goal is to review the history of biomedical information and healthcare practices related to past pandemics in order to illustrate just how exceptional and dependent on biomedical informatics are the recent scientific insights into human immune responses to viral infection, which are enabling rapid antiviral vaccine development and clinical management of severe cases - despite the many societal challenges ahead.
Methods: This paper briefly reviews some of the key historical antecedents leading up to modern insights into epidemic and pandemic processes with their biomedical and healthcare information intended to guide practitioners, agencies, and the lay public in today's ongoing pandemic events.
Conclusions: Poor scientific understanding and excessively slow learning about infectious disease processes and mitigating behaviors have stymied effective treatment until the present time. Advances in insights about immune systems, genomes, proteomes, and all the other -omes, became a reality thanks to the key sequencing technologies and biomedical informatics that enabled the Human Genome Project, and only now, 20 years later, are having an impact in ameliorating devastating zoonotic infectious pandemics, including the present SARS-CoV-2 event through unprecedently rapid vaccine development. In the future these advances will hopefully also enable more targeted prevention and treatment of disease. However, past and present shortcomings of most of the COVID-19 pandemic responses illustrate just how difficult it is to persuade enough people - and especially political leaders - to adopt societally beneficial risk-avoidance behaviors and policies, even as these become better understood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416199 | PMC |
http://dx.doi.org/10.1055/s-0041-1726482 | DOI Listing |
Microb Biotechnol
January 2025
Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models.
View Article and Find Full Text PDFIndian Pediatr
January 2025
Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India. Correspondence to: Professor Vijayalakshmi Bhatia, C- Block, Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India.
Objective: Data regarding the efficacy and feasibility of telemedicine services in type 1 diabetes (T1D) are sparse in India. This study was planned to assess non-inferiority of glycemic control and diabetes knowledge score after outreach care via telemedicine.
Methods: The study enrolled persons with T1D (age £ 25 years).
Breast Cancer Res
January 2025
Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.
View Article and Find Full Text PDFEMBO Rep
January 2025
Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
Aberrant immune responses to viral pathogens contribute to pathogenesis, but our understanding of pathological immune responses caused by viruses within the human virome, especially at a population scale, remains limited. We analyzed whole-genome sequencing datasets of 6,321 Japanese individuals, including patients with autoimmune diseases (psoriasis vulgaris, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), pulmonary alveolar proteinosis (PAP) or multiple sclerosis) and coronavirus disease 2019 (COVID-19), or healthy controls. We systematically quantified two constituents of the blood DNA virome, endogenous HHV-6 (eHHV-6) and anellovirus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!