During sepsis the normal induction of circulating insulin-like growth factor-I (IGF-I) by growth hormone (GH) action on liver is attenuated, a phenomenon called hepatic GH resistance. Hepatic GH resistance can be caused by cytokine-mediated activation of the NF-κB pathway which interferes with normal GH-signaling. The afferent and efferent fibers of the vagus nerve are integral to the cholinergic anti-inflammatory pathway (CAP) which attenuates hepatic TNFα production by activating the α7 nicotinic acetylcholine receptor (α7nAChR). We examined the effects of selective afferent vagotomy (SAV) and α7nAChR activation on sepsis-induced mortality, hepatic and systemic inflammation, the GH/IGF system and hepatic GH resistance using Sprague Dawley (SD) rats, C57BL/6 wild type (WT) mice, and α7nAChR knockout (KO) mice. Capsaicin was used to perform SAV and GTS-21 (α7nAChR agonist) was used to activate the α7nAChR. Sepsis-induced mortality, hepatic NF-κB activation, and plasma cytokine levels were increased in SAV rats and reduced in GTS-21-treated mice. The effects of sepsis on the GH/IGF-I system plasma IGF-I, IGF binding protein-1 (IGFBP-1), hepatic IGF-I, IGFBP-1, and GH receptor (GHR) mRNA and rhGH-responsiveness in mice were improved by GTS-21. Collectively these results confirm the protective effects of the anti-inflammatory CAP and α7nAChR activation in sepsis. They also provide evidence the CAP and α7nAChR activation could be used to attenuate hepatic GH resistance and anabolic failure in sepsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0000000000001792 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!