Technological innovations and advances in scientific understanding have created an environment where data can be collected, analyzed, and interpreted at scale, ushering in the era of personalized medicine. The ability to isolate cells from individual patients offers tremendous promise if those cells can be used to generate functional tissue replacements or used in disease modeling to determine optimal treatment strategies. Here, we review recent progress in the use of hydrogels to create artificial cellular microenvironments for personalized tissue engineering and regenerative medicine applications, as well as to develop personalized disease models. We highlight engineering strategies to control stem cell fate through hydrogel design, and the use of hydrogels in combination with organoids, advanced imaging methods, and novel bioprinting techniques to generate functional tissues. We also discuss the use of hydrogels to study molecular mechanisms underlying diseases and to create personalized in vitro disease models to complement existing pre-clinical models. Continued progress in the development of engineered hydrogels, in combination with other emerging technologies, will be essential to realize the immense potential of personalized medicine. STATEMENT OF SIGNIFICANCE: In this review, we cover recent advances in hydrogel engineering strategies with applications in personalized medicine. Specifically, we focus on material systems to expand or control differentiation of patient-derived stem cells, and hydrogels to reprogram somatic cells to pluripotent states. We then review applications of hydrogels in developing personalized engineered tissues. We also highlight the use of hydrogel systems as personalized disease models, focusing on specific examples in fibrosis and cancer, and more broadly on drug screening strategies using patient-derived cells and hydrogels. We believe this review will be a valuable contribution to the Special Issue and the readership of Acta Biomaterialia will appreciate the comprehensive overview of the utility of hydrogels in the developing field of personalized medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2021.04.020 | DOI Listing |
Comput Med Imaging Graph
January 2025
CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:
In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Background: Tinnitus is a major health issue, but currently no tinnitus elimination treatments exist for chronic subjective tinnitus. Acoustic therapy, especially personalized acoustic therapy, plays an increasingly important role in tinnitus treatment. With the application of smartphones, personalized acoustic stimulation combined with smartphone apps will be more conducive to the individualized treatment and management of patients with tinnitus.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Neurosurgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
Objective: The purpose of this study was to present a newly designed 3D-printed personalized model (3D PPM) of a radiofrequency needle guide with a maxillary fixation for gasserian ganglion (GG) puncture.
Methods: Implementation of 3D CT-guided radiofrequency therapy of the GG with and without use of 3D PPM was analyzed. The following parameters were assessed: radiation time, dose area product, air kerma reference point, pain severity during the puncture needle insertion, prosopalgia regression degree (according to visual analog scale) and the severity of facial numbness (according to the Barrow Neurological Institute scale) in the early postoperative period, and postpuncture complications.
JCO Precis Oncol
January 2025
Department of Medical Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.
Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!