Although intracellular Wnt signaling pathways need to be tightly regulated to promote hematopoietic stem cell self-renewal, the source and identity of important Wnt ligands in the bone marrow is still largely unknown. The noncanonical ligand Wnt4 is expressed in the bone marrow as well as in the stroma, and its overexpression in fetal liver cells facilitates thymic recovery; however, its impact on adult hematopoietic stem cell function remains unclear. Here, we report that the deletion of Wnt4 from hematopoietic cells in mice (Wnt4 ) resulted in decreased lymphopoiesis at steady state. This was likely at least in part due to the increased proinflammatory environment present in the bone marrow of Wnt4 mice. Wnt4 hematopoietic stem cells displayed reduced reconstitution capacity in serial transplants, thus demonstrating defective self-renewal, and they expanded poorly in response to lipopolysaccharide stimulation. This appeared to be the result of the absence of Wnt4 in stem/progenitor cells, as myeloid-restricted Wnt4 deletion had no notable effect. Finally, we observed that Wnt4 stem/progenitor cells were more quiescent, presenting enhanced levels of stress-associated JNK phosphorylation and p16 expression, likely contributing to the reduced expansion observed in transplants. In conclusion, our results identify a new, largely autocrine role for Wnt4 in hematopoietic stem cell self-renewal, suggesting that regulation of Wnt signaling in hematopoiesis may not need Wnt secretion and could be independent of morphogen gradients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.3385 | DOI Listing |
J Clin Med
December 2024
Department of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland.
Haematological malignancies and their treatment regimens often lead to various complications that impair patients' physical functioning. This study aimed to assess the level of physical activity and exercise capacity in patients with haematological malignancies who were qualified for haematopoietic stem cell transplantation (HSCT). A prospective, single-centre study was conducted on patients with haematological malignancies qualified for HSCT (study group, = 103) and a cohort of healthy volunteers (reference group, = 100).
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Health Economics and Medical Law, Faculty of Health Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland.
Patient satisfaction is one of the indicators of the quality of nursing care. The purpose of this study is to find out the level of satisfaction of patients with multiple myeloma with the quality of nursing care in oncology units. Data were obtained by a diagnostic survey method, using the Newcastle Nursing Satisfaction Scale.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
The treatment of Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-cell ALL) has seen substantial progress over the past two decades. The introduction of tyrosine kinase inhibitor (TKIs) has resulted in dramatic improvements in long-term survival. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), with its curative potential, has always been an integral part of the treatment algorithm of Ph+ ALL.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!