Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper analyzes hourly PM2.5 measurements from government-controlled and U.S. embassy-controlled monitoring stations in five Chinese cities between January 2015 and June 2017. We compare the two datasets with an impulse indicator saturation technique that identifies hours when the relation between Chinese and U.S. reported data diverges in a statistically significant fashion. These temporary divergences, or impulses, are 1) More frequent than expected by random chance; 2) More positive than expected by random chance; and 3) More likely to occur during hours when air pollution concentrations are high. In other words, relative to U.S.-controlled monitoring stations, government-controlled stations systematically under-report pollution levels when local air quality is poor. These results contrast with the findings of other recent studies, which argue that Chinese air quality data misreporting ended after a series of policy reforms beginning in 2012. Our findings provide evidence that local government misreporting did not end after 2012, but instead continued in a different manner. These results suggest that Chinese air quality data, while still useful, should not be taken entirely at face value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059859 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249063 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!