Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
X-ray scatter compensation is a very desirable technique in flat-panel X-ray imaging and cone-beam computed tomography. State-of-the-art U-net based scatter removal approaches yielded promising results. However, as there are no physics' constraints applied to the output of the U-Net, it cannot be ruled out that it yields spurious results. Unfortunately, in the context of medical imaging, those may be misleading and could lead to wrong conclusions. To overcome this problem, we propose to embed B-splines as a known operator into neural networks. This inherently constrains their predictions to well-behaved and smooth functions. In a study using synthetic head and thorax data as well as real thorax phantom data, we found that our approach performed on par with U-net when comparing both algorithms based on quantitative performance metrics. However, our approach not only reduces runtime and parameter complexity, but we also found it much more robust to unseen noise levels. While the U-net responded with visible artifacts, the proposed approach preserved the X-ray signal's frequency characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2021.3074712 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!