Control of electrode-electrolyte interfacial reactivity at high-voltage is a key to successfully obtain high-energy-density lithium-ion batteries. In this study, 2-aminoethyldiphenyl borate (AEDB) is investigated as a multifunctional electrolyte additive in stabilizing surface and bulk of both Ni-rich LiNi Co Mn O (NCM851005) and graphite electrodes in a cell operated with elevated upper cutoff voltage of 4.4 V vs. Li /Li. The presence of AEDB in a full-cell inhibits structural degradation of both cathode and anode materials, suppressing crack formation, and reduces metal dissolution at the cathode and metal deposition at the anode. As a consequence, the interfacial resistance is significantly reduced. Moreover, this is a case where "the whole is greater than the sum of the parts": the effect of AEDB in half-cells is rather modest, whereas in full-cells its addition results in tremendous performance improvement. The graphite‖NCM851005 full-cell in the presence of AEDB has a capacity retention of 88 % after 100 cycles, even when the upper cutoff voltage is set to 4.35 V, corresponding to 4.4 V vs Li /Li, whereas with standard electrolyte under the same conditions it is only 21 %. The study shows a simple and easy approach to using Ni-rich cathodes in an extended voltage window and demonstrates the importance of full-cell testing for electrolyte additive selection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202100511DOI Listing

Publication Analysis

Top Keywords

electrolyte additive
12
upper cutoff
8
cutoff voltage
8
44 v /li
8
presence aedb
8
cross-talk-suppressing electrolyte
4
additive enabling
4
enabling high
4
voltage
4
high voltage
4

Similar Publications

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

This study addresses the growing interest in nutritional supplements that improve athletic performance in endurance sports. Previous research suggests that nitrates in beetroot juice enhance blood vessel dilation and oxygen delivery to muscles. However, the effects of these nitrates on cardiopulmonary performance in female athletes remain underexplored.

View Article and Find Full Text PDF

This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!