Purpose: Data-driven rigid motion estimation for PET brain imaging is usually performed using data frames sampled at low temporal resolution to reduce the overall computation time and to provide adequate signal-to-noise ratio in the frames. In recent work it has been demonstrated that list-mode reconstructions of ultrashort frames are sufficient for motion estimation and can be performed very quickly. In this work we take the approach of using image-based registration of reconstructions of very short frames for data-driven motion estimation, and optimize a number of reconstruction and registration parameters (frame duration, MLEM iterations, image pixel size, post-smoothing filter, reference image creation, and registration metric) to ensure accurate registrations while maximizing temporal resolution and minimizing total computation time.
Methods: Data from F-fluorodeoxyglucose (FDG) and F-florbetaben (FBB) tracer studies with varying count rates are analyzed, for PET/MR and PET/CT scanners. For framed reconstructions using various parameter combinations interframe motion is simulated and image-based registrations are performed to estimate that motion.
Results: For FDG and FBB tracers using 4 × 10 true and scattered coincidence events per frame ensures that 95% of the registrations will be accurate to within 1 mm of the ground truth. This corresponds to a frame duration of 0.5-1 sec for typical clinical PET activity levels. Using four MLEM iterations with no subsets, a transaxial pixel size of 4 mm, a post-smoothing filter with 4-6 mm full width at half maximum, and averaging two or more frames to create the reference image provides an optimal set of parameters to produce accurate registrations while keeping the reconstruction and processing time low.
Conclusions: It is shown that very short frames (≤1 sec) can be used to provide accurate and quick data-driven rigid motion estimates for use in an event-by-event motion corrected reconstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261293 | PMC |
http://dx.doi.org/10.1002/mp.14889 | DOI Listing |
Nat Commun
December 2024
KoBold Metals, Berkeley, CA, USA.
Plate tectonics is a unique feature of Earth, but its proposed time of initiation is still controversial, with published estimates ranging from ca. 4.2 to 0.
View Article and Find Full Text PDFEnviron Technol
December 2024
Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.
View Article and Find Full Text PDFJ Am Geriatr Soc
December 2024
NIA-Layton Aging & Alzheimer's Disease Research Center, Oregon Health & Science University, Portland, Oregon, USA.
Background: Life-space mobility can be a behavioral indicator of loneliness. This study examined the association between life-space mobility measured with motion sensors and weekly vs. annually reported loneliness.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
The School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
Background: Simultaneous and proportional control (SPC) based on surface electromyographic (sEMG) signals has emerged as a research hotspot in the field of human-machine interaction (HMI). However, the existing continuous motion estimation methods mostly have an average Pearson coefficient (CC) of less than 0.85, while high-precision methods suffer from the problem of long inference time (> 200 ms) and can only estimate SPC of less than 15 hand movements, which limits their applications in HMI.
View Article and Find Full Text PDFPract Radiat Oncol
December 2024
Department of Radiation Oncology, Willis Knighton Cancer Center, 2600 Kings Highway, Shreveport, Louisiana, USA 71103 &, Department of Clinical Research, University of Jamestown, Fargo, ND, USA. Electronic address:
Purpose: Motion management presents a significant challenge in thoracic stereotactic ablative radiotherapy (SABR). Currently, a 5.0 mm standard planning target volume (PTV) margin is widely used to ensure adequate dose to the tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!