Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06321-0 | DOI Listing |
Front Plant Sci
December 2024
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.
Hairy vetch ( Roth), a leguminous plant with nitrogen-fixing ability, is used as a cover crop and has the potential to suppress weeds and plant diseases. The microbial composition, particularly fungal endophytes, which may be related to the beneficial functions of this crop, has not been previously studied. In this study, we analyzed the diversity and function of culturable fungal endophytes associated with hairy vetch from eight locations across Japan.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
Chemosphere
December 2024
Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih., C.P. 31136, México. Electronic address:
The use of biocontrol microorganisms is one of the primary techniques used in agriculture to combat the damage caused by phytopathogens. Of these, Trichoderma sp. stand out as fungi species that are naturally present in agricultural soil and can come into contact with various compounds, such as nanostructured particles (NPs), which are starting to be used as pesticides and fertilizers.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemical Engineering, Bioengineering and Biomass Valorization Laboratory, Federal University of Ceará, Fortaleza, Ceará 60020-181, Brazil.
Cellulose nanostructures obtained from lignocellulosic biomass via enzymatic processes may offer advantages in terms of material properties and processing sustainability. Thus, in this study, cellulose nanoparticles with a spherical morphology were produced through the enzymatic hydrolysis of cashew apple bagasse (CAB). CAB was previously subjected to alkaline and acid-alkali pretreatment, and the pretreated solids were labeled as CAB-PTA and CAB-PT-HA, respectively.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan. Electronic address:
The GH19 chitinase Chi19MK from Lysobacter sp. MK9-1 inhibits fungal growth. In this study, the thermal stability of Chi19MK was investigated in buffers of different pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!