The maximum annual radiation ocular dose limit for medical staff has been reduced to 20 mSv in the current European directive 2013/59/Euratom. This multi-centric study aims at reporting the protected and unprotected eye lens doses in different fluoroscopically guided interventions and to evaluate any other factors that could influence the ocular dose. From July 2018 to July 2019, ocular radiation doses of six interventionists of four departments during complex interventions were recorded with a thermoluminescent dosimeter in front of and behind radiation protection glasses to measure the protected and unprotected doses. The position of personnel, intervention type, fluoroscopy time, total body dose and use of pre-installed protection devices like lead acrylic shields were also systematically recorded. Linear regression analysis was used to estimate the doses at 2 y and 5 y. The annual unprotected/protected ocular doses of six interventionists were 67/21, 32.7/3.3, 27.4/5.1, 7/0, 21.8/2.2, and 0/0 mSv, respectively. The unprotected dose crossed the 20-mSv annual limits for four interventionists and protected dose for one less experienced interventionist. The estimated 5-y protected ocular dose of this interventionist was 101.318 mSv (95%CI 96.066-106.57), also crossing the 5-y limit. The use of a lead acrylic shield was observed to have a significant effect in reducing ocular doses. The annual unprotected and protected ocular doses for interventionists dealing with complex interventions could cross the present permitted yearly limit. The measurement of significant protected ocular dose behind the radiation protection glasses emphasizes the additional indispensable role of pre-installed radiation protection devices and training in reducing radiation doses for complex procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HP.0000000000001393DOI Listing

Publication Analysis

Top Keywords

ocular dose
16
doses interventionists
12
radiation protection
12
ocular doses
12
protected ocular
12
ocular
9
protected unprotected
8
doses
8
radiation doses
8
complex interventions
8

Similar Publications

Orbital apex syndrome secondary to Sweet syndrome.

BMJ Case Rep

January 2025

Department of Ophthalmology, Rochdale Infirmary, Rochdale, UK.

Sweet syndrome (SS), or acute febrile neutrophilic dermatosis, is a dermatologic, auto-inflammatory disorder of unclear origin, often accompanied by systemic inflammation affecting various tissues, including the eyes. Common ocular manifestations include conjunctivitis but can extend to other ocular tissues. Orbital apex syndrome (OAS) involves damage to several cranial nerves transversing the orbital apex, leading to ophthalmoplegia and vision loss.

View Article and Find Full Text PDF

Purpose: To report the clinical presentation, treatment course, and outcome of a case of bilateral frosted branch angiitis (FBA) and neuroretinitis associated with acute Epstein-Barr virus (EBV) infection in a pediatric patient with Turner Syndrome.

Methods: Case report with multimodal ocular imaging and extensive systemic workup.

Results: A 16-year-old female with Turner syndrome presented with acute bilateral vision loss, hearing loss, and ataxia.

View Article and Find Full Text PDF

Mifepristone achieves tumor suppression and ferroptosis through PR/p53/HO1/GPX4 axis in meningioma cells.

J Neurooncol

January 2025

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Purpose: This study explores the effects of mifepristone on the proliferation, motility, and invasion of malignant and benign meningioma cells, aiming to identify mifepristone-sensitive types and investigate the underlying molecular mechanisms.

Methods: IOMM-Lee and HBL-52 meningioma cells were treated with 0, vehicle control (VC), 5, 10, 20, 40, and 80 μM of mifepristone for 12, 24, 48, 72, and 96 h. Proliferation was assessed via CCK8 assay, while motility and invasion were measured using wound scratch and transwell assays.

View Article and Find Full Text PDF

Systemic Medications and Their Ocular Side Effects.

Cureus

December 2024

Department of Clinical Research, Clinical Virtual Research Center, Wayne, USA.

Most of the drugs that we use in our everyday clinic cause ocular side effects or toxicity, depending on the drug duration and dose. Eye care physicians should be familiar with any possible ocular side effects linked to these medications, which could save the physicians' time to determine the diagnosis of the ocular irritation or toxicity. Not all medications are listed in this review, but we did go over the most common systemic medications based on our experience seeing patients in our everyday clinic.

View Article and Find Full Text PDF

Background: Myopia has been a rising problem globally. Early-onset myopia significantly increases the risk of high myopia later in life. Despite the proven benefits of increased outdoor time, optimal strategies for preventing early-onset myopia in premyopic children need further investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!