Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the breast, the pleiotropic epigenetic regulator HDAC7 can influence stemness. The authors used MCF10 cells knocked-out for HDAC7 to explore the contribution of HDAC7 to IGF1 signaling. HDAC7 buffers H3K27ac levels at the IGFBP6 and IGFBP7 genomic loci and influences their expression. In this manner, HDAC7 can tune IGF1 signaling to sustain stemness. In HDAC7 knocked-out cells, RXRA promotes the upregulation of IGFBP6/7 mRNAs. By contrast, HDAC7 increases FABP5 expression, possibly through repression of miR-218. High levels of FABP5 can reduce the delivery of all-trans-retinoic acid to RXRA. Accordingly, the silencing of FABP5 increases IGFBP6 and IGFBP7 expression and reduces mammosphere generation. The authors propose that HDAC7 controls the uptake of all-trans-retinoic acid, thus influencing RXRA activity and IGF1 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/epi-2020-0347 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!