The subiculum sensitizes retrosplenial cortex layer 2/3 pyramidal neurons.

J Physiol

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.

Published: June 2021

Key Points: Neurons in the retrosplenial cortex (RSC), a cerebral region that connects synaptically with various brain regions, are known to increase neuronal activity in accordance with hippocampal sharp wave-ripples. Pyramidal cells in granular RSC (gRSC) layer 2/3, but not layer 5, exhibit slowly ramping depolarization and considerably delayed spikes in response to a step-pulse current injection. The latencies of delayed spikes in RSC layer 2/3 pyramidal neurons were shortened by a preceding current injection. This effect was mimicked by activation of axonal afferents from the subiculum, but not of neocortical afferents. The subiculum is likely to facilitate information processing and flow in the RSC.

Abstract: The retrosplenial cortex (RSC), a cerebral region involved in diverse cognitive functions, is an anatomical hub that forms monosynaptic connections with various brain areas. Here, we report a unique form of short-term intrinsic plasticity in mouse granular RSC layer 2/3 pyramidal cells. These cells exhibited delayed spikes in response to somatic current injection, but the spike latencies were shortened by a preceding brief depolarization (priming). This priming-induced sensitization is distinct from desensitization, which is commonly observed in other cortical neurons. The facilitatory priming effect lasted for more than 3 s, providing a time window for increased sensitivity to RSC inputs. Based on in vitro and in vivo patch-clamp recordings following optogenetic stimulation of axonal fibres, we found that preactivation of subicular afferents replicated the facilitatory priming effect. The results suggest that subicular inputs to RSC layer 2/3 neurons may modulate subsequent information integration in the RSC layer 2/3 circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP281152DOI Listing

Publication Analysis

Top Keywords

layer 2/3
24
rsc layer
16
retrosplenial cortex
12
2/3 pyramidal
12
delayed spikes
12
current injection
12
pyramidal neurons
8
rsc
8
cortex rsc
8
rsc cerebral
8

Similar Publications

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Introduction: Breast cancer is a significant worldwide health issue, particularly in Jordan, where early detection via mammography is essential for effective disease management. Despite the little radiation risk associated with mammography, it is crucial to monitor radiation exposure to guarantee patient safety. This study intends to assess skin entrance exposure and compute the Mean Glandular Dose (MGD) in mammography units to determine adherence to established criteria and pinpoint areas for enhancement.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Molecular arrangement in the chiral smectic phases of the glassforming (S)-4'-(1-methylheptylcarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]benzoate is investigated by X-ray diffraction. An increased correlation length of the positional short-range order in the supercooled state agrees with the previous assumption of the hexatic smectic phase. However, the registered X-ray diffraction patterns are not typical for the hexatic phases.

View Article and Find Full Text PDF

DCFE-YOLO: A novel fabric defect detection method.

PLoS One

January 2025

Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.

Accurate detection of fabric defects is crucial for quality control in the textile industry. However, the task of fabric defect detection remains highly challenging due to the complex textures and diverse defect patterns. To address the issues of inaccurate localization and false positives caused by complex textures and varying defect sizes, this paper proposes an improved YOLOv8-based fabric defect detection method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!