In humans, multisensory mechanisms facilitate object processing through integration of sensory signals that match in their temporal and spatial occurrence as well as their meaning. The generalizability of such integration processes across different sensory modalities is, however, to date not well understood. As such, it remains unknown whether there are cerebral areas that process object-related signals independently of the specific senses from which they arise, and whether these areas show different response profiles depending on the number of sensory channels that carry information. To address these questions, we presented participants with dynamic stimuli that simultaneously emitted object-related sensory information via one, two, or three channels (sight, sound, smell) in the MR scanner. By comparing neural activation patterns between various integration processes differing in type and number of stimulated senses, we showed that the left inferior frontal gyrus and areas within the left inferior parietal cortex were engaged independently of the number and type of sensory input streams. Activation in these areas was enhanced during bimodal stimulation, compared to the sum of unimodal activations, and increased even further during trimodal stimulation. Taken together, our findings demonstrate that activation of the inferior parietal cortex during processing and integration of meaningful multisensory stimuli is both modality-independent and modulated by the number of available sensory modalities. This suggests that the processing demand placed on the parietal cortex increases with the number of sensory input streams carrying meaningful information, likely due to the increasing complexity of such stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2021.03.008 | DOI Listing |
Epilepsia
January 2025
Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.
Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
January 2025
Genetics Lab of Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China. Electronic address:
Objective: This is a case report of a COL4A1 gene mutation which was confirmed by further genetic testing following anomalies observed in prenatal ultrasound and fetal brain magnetic resonance imaging (MRI).
Case Reports: The ultrasound examination of the patient revealed a mass in fetal left intracranial cavity. Repeated subsequent MRI detected an evolving mass in the left frontal parietal lobe.
Neuroimage
January 2025
Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. Electronic address:
Hierarchical syntactic structure processing is proposed to be at the core of the human language faculty. Syntactic processing is supported by the left fronto-temporal language network, including a core area in the inferior frontal gyrus as well as its interaction with the posterior temporal lobe (i.e.
View Article and Find Full Text PDFCortex
December 2024
Departments of Neurology and Nuclear Medicine, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Spain. Electronic address:
Background: This study aimed to evaluate the capacity of neuropsychological assessment to predict the regional brain metabolism in a cohort of patients with amnestic Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using Machine Learning algorithms.
Methods: We included 360 subjects, consisting of 186 patients with AD, 87 with bvFTD, and 87 cognitively healthy controls. All participants underwent a neuropsychological assessment using the Addenbrooke's Cognitive Examination and the Neuronorma battery, in addition to [F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging.
Brain Dev
January 2025
Department of Clinical Neuroelectrophysiology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Objective: There are fewer reports on the ictal electroencephalogram(EEG) of convulsions in infants and children with mild gastroenteritis (BCWG). Our study retrospectively analyzed the ictal EEG characteristics of convulsive episodes of BCWG.
Methods: The seizure-phase EEGs of children diagnosed with BCWG from September 2016 to January 2022 were searched and analyzed, and a total of thirteen seizure-phase EEGs of eight cases were analyzed retrospectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!