Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recycling wastes back into a manufacturing process, or into a separate product, is an important challenge. The primary aim of this work was to combine wastes from the steel industry, the galvanizing industry and the pulp and paper industry to form two new useful products. The steel industry generates the wastes red dust, mill scale, blast oxygen furnace slag and iron ore fines. Galvanizing industrial facilities dispose of sulfuric acid contaminated with iron. The pulp and paper industry produces the byproduct black liquor, which is high in lignin. Inserting these wastes as resources into the steel industry, or as stand-alone products, could reduce the need for virgin materials. The main methodology of the work was three-fold. First, spent sulfuric acid was used to precipitate the lignin from black liquor. Second, this lignin was combined with steel industry wastes and geopolymeric materials to make briquettes, a sustainable reducing material for steelmaking furnaces. Briquettes contained red dust, mill scale, blast oxygen furnace slag, iron ore fines and lignin precipitated from black liquor with spent sulfuric acid. Key research findings of compressive strength and weight loss testing showed the briquettes to be feasible for steel-making furnace use. Third, these steel industry wastes were investigated as a partial fly ash replacement in geopolymers. Main research findings were that compared to the control geopolymer, these geopolymer samples improved compressive strength and gave similar workability. Thus, the investigated wastes have the potential to both increase recycling in the steel industry and to improve geopolymeric products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2021.04.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!