Objectives: The Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a promising tool for the evaluation of stroke expansion to determine suitability for reperfusion therapy. The aim of this study was to validate deep learning-based ASPECTS calculation software that utilizes a three-dimensional fully convolutional network-based brain hemisphere comparison algorithm (3D-BHCA).
Materials And Methods: We retrospectively collected head non-contrast computed tomography (CT) data from 71 patients with acute ischemic stroke and 80 non-stroke patients. The results for ASPECTS on CT assessed by 5 stroke neurologists and by the 3D-BHCA model were compared with the ground truth by means of region-based and score-based analyses.
Results: In total, 151 patients and 3020 (151 × 20) ASPECTS regions were investigated. Median time from onset to CT was 195 min in the stroke patients. In region-based analysis, the sensitivity (0.80), specificity (0.97), and accuracy (0.96) of the 3D-BHCA model were superior to those of stroke neurologists. The sensitivity (0.98), specificity (0.92), and accuracy (0.97) of dichotomized ASPECTS > 5 analysis and the intraclass correlation coefficient (0.90) in total score-based analysis of the 3D-BHCA model were superior to those of stroke neurologists overall. When patients with stroke were stratified by onset-to-CT time, the 3D-BHCA model exhibited the highest performance to calculate ASPECTS, even in the earliest time period.
Conclusions: The automated ASPECTS calculation software we developed using a deep learning-based algorithm was superior or equal to stroke neurologists in performing ASPECTS calculation in patients with acute stroke and non-stroke patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105791 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!