Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Depth sensors could be a portable, affordable, marker-less alternative to three-dimension motion capture systems for gait analysis, but the effects of camera viewing angles on their joint angle tracking performance have not been fully investigated.
Research Questions: This study evaluated the accuracies of three depth sensors [Azure Kinect (AK); Kinect v2 (K2); Orbbec Astra (OA)] for tracking kinematic gait patterns during treadmill walking at five camera viewing angles (0°/22.5°/45°/67.5°/90°).
Methods: Ten healthy subjects performed fifteen treadmill walking trials (3 speeds × 5 viewing angles) using the three depth sensors to measure joint angles in sagittal hip, frontal hip, sagittal knee, and sagittal ankle. Ten walking steps were recorded and averaged for each walking trial. Range of motion in terms of maximum and minimum joint angles measured by the depth sensors were compared with the Vicon motion capture system as the gold standard. Depth sensors tracking accuracies were compared against the Vicon reference using root-mean-square error (RMSE) on the joint angle time series. Effects of different walking speeds, viewing angles, and depth sensors on the tracking accuracy were observed using three-way repeated-measure analysis of variance (ANOVA).
Results: ANOVA results on RMSE showed significant interaction effects between viewing angles and depth sensors for sagittal hip [F(8,72) = 4.404, p = 0.005] and for sagittal knee [F(8,72)=13.211, p < 0.001] joint angles. AK had better tracking performance when subjects walked at non-frontal camera viewing angles (22.5°/45°/67.5°/90°); while K2 performed better at frontal viewing angle (0°). The superior tracking performance of AK compared with K2/OA might be attributed to the improved depth sensor resolution and body tracking algorithm.
Significance: Researchers should be cautious about camera viewing angle when using depth sensors for kinematic gait measurements. Our results demonstrated Azure Kinect had good tracking performance of sagittal hip and sagittal knee joint angles during treadmill walking tests at non-frontal camera viewing angles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2021.04.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!