Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely adopted to investigate functional abnormalities in brain diseases. Rs-fMRI data is unsupervised in nature because the psychological and neurological labels are coarse-grained, and no accurate region-wise label is provided along with the complex co-activities of multiple regions. To the best of our knowledge, most studies regarding univariate group analysis or multivariate pattern recognition for brain disease identification have focused on discovering functional characteristics shared across subjects; however, they have paid less attention to individual properties of neural activities that result from different symptoms or degrees of abnormality. In this work, we propose a novel framework that can identify subjects with early-stage mild cognitive impairment (eMCI) and consider individual variability by learning functional relations from automatically selected regions of interest (ROIs) for each subject concurrently. In particular, we devise a deep neural network composed of a temporal embedding module, an ROI selection module, and a disease-identification module. Notably, the ROI selection module is equipped with a reinforcement learning mechanism so it adaptively selects ROIs to facilitate the learning of discriminative feature representations from a temporally embedded blood-oxygen-level-dependent signals. Furthermore, our method allows us to capture the functional relations of a subject-specific ROI subset through the use of a graph-based neural network. Our method considers individual characteristics for diagnosis, as opposed to most conventional methods that identify the same biomarkers across subjects within a group. Based on the ADNI cohort, we validate the effectiveness of our method by presenting the superior performance of our network in eMCI identification. Furthermore, we provide insightful neuroscientific interpretations by analyzing the regions selected for the eMCI classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2021.118048 | DOI Listing |
J Reprod Immunol
January 2025
Department of Chinese Medicine Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China. Electronic address:
Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.
View Article and Find Full Text PDFStem Cells
January 2025
Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556 IN, USA.
Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Hyperpolarized-C magnetic resonance imaging (HP-C MRI) was used to image changes in C-lactate signal during a visual stimulus condition in comparison to an eyes-closed control condition. Whole-brain C-pyruvate, C-lactate and C-bicarbonate production was imaged in healthy volunteers (N = 6, ages 24-33) for the two conditions using two separate hyperpolarized C-pyruvate injections. BOLD-fMRI scans were used to delineate regions of functional activation.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.
Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!