For stopping long-time harmful bacterial infection, designing a drug carrier with a highly prolonged release profile is a promising approach that is of interest to different biomedical areas. The subject of this work is to synthesis a novel carrier system through coordination of MIL-88(Fe) to carboxymethyl cellulose (CMC) for enhancing interaction between drug and carrier. We established an ultrasound-assisted synthetic method for in situ synthesis of MIL-88(Fe) in the presence of CMC resulting in CMC/MIL-88(Fe) composite. The CMC/MIL-88(Fe) was loaded with a high amount of Tetracycline (TC) by immersion of carrier to the TC aqueous solution. The release profile in the simulated physiological conditions, pH 7.4, revealed a low initial burst release followed by a sustained and prolonged release over 384 h. The in vitro cytotoxicity of CMC/MIL-88(Fe) against Human skin fibroblast (HFF-1) cells was calculated by MTT assay and showed a good cytocompatibility. The antibacterial activity was found for TC-loaded CMC/MIL-88(Fe) toward both E. coli and S. aureus with MIC 64 mg·ml.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.04.092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!