The shuttling of polysulfides is the most detrimental contribution to degrading the capacity and cycle stability of lithium-sulfur (Li-S) batteries. Adding a carbon interlayer to prevent the polysulfides from migrating is feasible, and a rational design of the structures and surface properties of the carbon layer is essential to increasing its effectiveness. Herein, we report a hierarchical porous carbon (HPC) created by carbonization of bis(phenoxy)phosphazene and in-situ doping of triple heteroatoms into the carbon lattice to fabricate an effective polysulfide-trapping interlayer. The generated carbon integrates the advantages of a hierarchical porous structure, a high specific area and rich dopants (N, O and P), to yield chemisorption and physical confinement for polysulfides and fast ion-transport synergistically. The HPC interlayer significantly improves the electrochemical performance of Li-S batteries, including an exceptional discharge capacity of 1509 mA h/g at 0.06 C and a high capacity retention of 83.7 % after 250 cycles at 0.3 C. This work thus proposes a facile in-situ synthesis of heteroatom-doped carbon with rational porous structures for suppressing the shuttle effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202100693 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFSmall
January 2025
School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China.
The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Nanomaterials Laboratory, Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, India.
Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Na-Se batteries with high theoretical capacity and rich natural abundance are regarded as desirable substitutes for lithium-ion batteries in the predicament of scarce lithium resources. However, the huge volume expansion of Se and the shuttling effect of polyselenides hinder the development of Na-Se batteries. Herein, the hierarchically porous carbon encapsulated Se (Se/HPC) is successfully prepared by molten Se diffusing into the multi-scaled orthogonal channels of In-MOF derived carbon matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!