Polymer Coatings on Virus-like Particle Nanoreactors at Low Ionic Strength-Charge Reversal and Substrate Access.

Biomacromolecules

Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington 47405, Indiana, United States.

Published: May 2021

Virus-like particles (VLPs) are a class of biomaterials which serve as platforms for achieving the desired functionality through interior and exterior modifications. Through ionic strength-mediated electrostatic interactions, VLPs have been assembled into hierarchically ordered materials. This work builds on predictive models to prepare polymer-coated VLP clusters at very low ionic strength. Zeta potential measurements showed that the clusters carried a strongly positive charge, a complete charge reversal from the VLP building block. SAXS analysis confirmed polymer adsorption onto the VLP exterior. We then studied the activity of an encapsulated enzyme toward small molecular and macromolecular substrates to determine the effect of each component of the hierarchically assembled material. We found that while encapsulation and polymer coating did not have a large effect on access to the enzyme by its native, small molecular substrate, substrate modification with a macromolecule caused the polymer coating and encapsulation to affect the access to the enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238134PMC
http://dx.doi.org/10.1021/acs.biomac.1c00208DOI Listing

Publication Analysis

Top Keywords

low ionic
8
small molecular
8
polymer coating
8
access enzyme
8
polymer
4
polymer coatings
4
coatings virus-like
4
virus-like particle
4
particle nanoreactors
4
nanoreactors low
4

Similar Publications

The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.

View Article and Find Full Text PDF

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

The role of disulfide bonds in L-arginine ameliorating the quality of low-salt sturgeon surimi gels induced by microwave: Increasing the diameter and fractal dimension of network.

Food Res Int

February 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Quanzhou Marine Biotechnology Industry Research Institute, Quanzhou 362700, China. Electronic address:

The purpose of this study was to investigate the mechanism of enhancing gelling properties of low-salt surimi by utilizing the complementary advantages of L-arginine (L-Arg) and microwave (MW) from the perspective of gels' network characteristics. At MW 3 min, the diameters of protein filaments were increased from 0.015 μm to 0.

View Article and Find Full Text PDF

Novel Collector of a Dodecylpyridinium Chloride Ionic Liquid in the Reverse Flotation Separation of Muscovite from Apatite.

Langmuir

January 2025

Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Reverse flotation separation of muscovite from apatite using a dodecylpyridinium chloride (DPDC) ionic liquid as the collector was studied in this work. The microflotation results depicted that DPDC had a strong collecting for muscovite but had a slight collecting for apatite when using phosphoric acid as a depressant for apatite in a weakly acidic pH value pulp, artificial mixture mineral flotation showed that reverse flotation separation of muscovite from apatite can be effectively achieved in the reagent scheme of phosphoric acid/DPDC, and DPDC had a better separation performance in the muscovite/apatite system than DDA. The adsorption measurements indicated that the adsorption amount of DPDC on the apatite surface was less than that of DPDC on the muscovite surface, and the zeta potential results confirmed that a strong interaction occurred between DPDC and the muscovite surface, while an extremely weak interaction occurred between DPDC and the apatite surface in the presence of phosphoric acid at pH ∼ 5.

View Article and Find Full Text PDF

Pore formation mechanism and size regulation study of atmospheric dried cellulose nanofiber aerogel templated by emulsions.

Int J Biol Macromol

January 2025

College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:

Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!