Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular dynamics or MD simulation is gradually maturing into a tool for constructing in vivo models of living cells in atomistic details. The feasibility of such models is bolstered by integrating the simulations with data from microscopic, tomographic and spectroscopic experiments on exascale supercomputers, facilitated by the use of deep learning technologies. Over time, MD simulation has evolved from tens of thousands of atoms to over 100 million atoms comprising an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium. In this chapter, we present a step-by-step outline for preparing, executing and analyzing such large-scale MD simulations of biological systems that are essential to life processes. All scripts are provided via GitHub.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1394-8_18 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!