Hyperreflexia and enhanced ripple oscillations in the taurine-deficient mice.

Amino Acids

Center for Developmental Neuroscience, College of Staten Island, 2800 Victory Blvd., Staten Island, NY, 10314, USA.

Published: May 2021

In this study, we examined neuronal excitability and skeletal muscle physiology and histology in homozygous knockout mice lacking cysteine sulfonic acid decarboxylase (CSAD-KO). Neuronal excitability was measured by intracerebral recording from the prefrontal cortex. Skeletal muscle response was measured through stretch reflex in the ankle muscles. Specifically, we measured the muscle tension, amplitude of electromyogram and velocity of muscle response. Stretch reflex responses were evoked using a specialized stretching device designed for mice. The triceps surae muscle was stretched at various speeds ranging from 18 to 18,000° s. A transducer recorded the muscle resistance at each velocity and the corresponding EMG. We also measured the same parameter in anesthetized mice. We found that at each velocity, the CSAD-KO mice generated more tension and exhibited higher EMG responses. To evaluate if the enhanced response was due to neuronal excitability or changes in the passive properties of muscles, we anesthetize mice to eliminate the central component of the reflex. Under these conditions, CSAD-KO mice still exhibited an enhanced stretch reflex response, indicating ultrastructural alterations in muscle histology. Consistent with this, we found that sarcomeres from CSAD-KO muscles were shorter and thinner when compared to control sarcomeres. Neuronal excitability was further investigated using intracerebral recordings of brain waves from the prefrontal cortex. We found that extracellular field potentials in CSAD-KO mice were characterized by reduced amplitude of low-frequency brain waves (delta, theta, alpha, beta and gamma) and increased in the high low-frequency brain waves (slow and fast ripples). Increased slow and fast ripple rates serve as a biomarker of epileptogenic brain. We have previously shown that taurine interacts with GABA receptors and induces biochemical changes in the GABAergic system. We suggest that taurine deficiency leads to alterations in the GABAergic system that contribute to the enhanced stretch reflex in CSAD-KO mice through biochemical mechanisms that involve alterations not only at the spinal level but also at the cortical level.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-021-02977-xDOI Listing

Publication Analysis

Top Keywords

neuronal excitability
16
stretch reflex
16
csad-ko mice
16
brain waves
12
mice
9
skeletal muscle
8
prefrontal cortex
8
muscle response
8
enhanced stretch
8
low-frequency brain
8

Similar Publications

Central amygdala NPBWR1 neurons facilitate social novelty seeking and new social interactions.

Sci Adv

January 2025

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan.

The formation of new social interactions is vital for social animals, but the underlying neural mechanisms remain poorly understood. We identified CeA neurons, a population in central amygdala expressing neuropeptide B/W receptor-1 (NPBWR1), that play a critical role in these interactions. CeA neurons were activated during encounters with unfamiliar, but not with familiar, mice.

View Article and Find Full Text PDF

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Introduction: Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau () gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models.

Methods: To investigate the effects of gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption.

View Article and Find Full Text PDF

Background: Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!