Fungal communities are associated with healthy peanut crops and good crop production, through the regulation of pod rot disease. Rotted peanut pods and their surrounding soil samples were collected from locations in northern China. Fungal species were identified by next-generation sequencing, using the conserved sequences of their internal transcribed spacer regions. Results showed that rotted pod samples were rich in the phyla Ascomycota and Basidiomycota, and soil samples also contained these, plus Chytridiomycota and Zygomycota. There were regional variations in the species of fungi related to peanut pod rot and its surrounding soil, between locations. Fungal species of Cryptococcus and Fusarium were less abundant in soil samples than in rotted pod samples, and were the main pathogenic fungi identified in our study. Soil total carbon, nitrogen, and potassium had a strong influence on the fungal community, and total phosphorous and calcium ions, together with soil pH, had a modest influence. Only Mycosphaerella and Gibberella were not significantly affected by these factors. These findings may be of some help to control pod rot disease and reduce the production loss of peanut crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-021-02471-3 | DOI Listing |
Pathogens
January 2025
Laboratory of Analysis of Natural Compounds, Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies.
View Article and Find Full Text PDFSci Total Environ
January 2025
NGO "Ukrainian Researchers Society", Ukraine; Institute of Geography of National Academy of Sciences of Ukraine, Ukraine.
The war in Ukraine is having a dramatic impact on the physical, chemical and biological soil properties. A comprehensive study of the war-affected soils during the ongoing war is a challenging task owing to the many constrains that arise during fieldworks. Remote sensing data is the best solution for overall analysis of physical soil disturbances.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface.
View Article and Find Full Text PDFFront Microbiol
January 2025
Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany.
Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
School of Environment and Resource, Xichang University, Xichang, 615000, China.
The extensive mining of bastnasite (CeFCO) has caused severe pollution of lanthanum (La), cerium (Ce), and fluorine (F) in the surrounding farmland soil, threatening the safety of the soil-plant system. However, the stress effects of the interaction among these three elements on the tolerance and accumulation traits of Brassica chinensis L. (B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!