Do angiosperm tree species adjust intervessel lateral contact in response to soil drought?

Physiol Plant

Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.

Published: August 2021

During soil drought (i.e. limited soil water availability to plants), woody species may adjust the structure of their vessel network to improve their resistance against future soil drought stress. Impacts of soil drought on intervessel lateral contact remain poorly understood despite of its significance to xylem transport efficiency and safety. Here, we analysed drought-induced modifications in xylem structures of temperate angiosperm trees with a focus on intervessel lateral contact. Anatomical analyses were performed both in stems of seedlings cultivated under different substrate water availability and annual rings of mature individuals developed during years of low and high soil drought intensities. In response to limited water availability, a decrease in vessel diameter (up to -20%) and simultaneous increase in vessel density (up to +60%) were observed both in seedlings and mature trees. Conversely, there were only small and inconsistent drought-induced changes in intervessel contact frequency and intervessel contact fraction (typically up to ±15%) observed across species, indicating that intervessel lateral contact is a conservative trait. The small adjustments in intervessel lateral contacts were primarily driven by changes in the contact frequencies between neighbouring vessels (i.e. vessel grouping) rather than by changes in proportions of shared cell walls. Our results demonstrate that angiosperm tree species, despite remarkable adjustments in vessel dimensions and densities upon soil drought, exhibit surprisingly invariant intervessel lateral contact architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13435DOI Listing

Publication Analysis

Top Keywords

intervessel lateral
24
lateral contact
20
soil drought
20
water availability
12
angiosperm tree
8
tree species
8
species adjust
8
intervessel
8
contact
8
intervessel contact
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!