Durability is a crucial feature to expand the application field of artificial superhydrophobic coatings. Herein, a kind of durable superhydrophobic coating is prepared by a simple and cheap method using a fluorine-free suspension as the raw material, which consists of epoxy modified silicone resin (MSR), functionalized SiO2, GO, and lamellar mica powder (MP). The MSR@SiO2 + GO + MP coating shows outstanding surface wettability with a water contact angle of 163.8°, a low sliding angle of 3.5° and the microdroplet adhesive force of about 12.6 ± 0.5 μN. Furthermore, it can withstand alternating high and low temperatures, intense UV radiation for 7 days, strong chemical attack, and various mechanical durability tests. In addition, the coating also exhibits a significantly repairable ability to resist O2 plasma etching, and outstanding self-cleaning both in air and oil even after mechanical damage. The mechanism for the influence of the multiple hybridizations on the long-term corrosion stability and thermal-related properties of the superhydrophobic coating is further systematically studied. The simple method and superhydrophobic coating should have good application prospects in large area protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr08985k | DOI Listing |
Polymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Occupational Health Engineering, Faculty of Health, Qazvin University of Medical Sciences, Qazvin, Iran.
The purpose of this research is to investigate the potential of chemical modification to improve the hydrophobic properties and thermal stability of bamboo fibers and to evaluate the sound absorption performance of raw and modified fibers. To achieve this goal, bamboo fibers were modified using stearic acid coatings and aluminum hydroxide nanoparticles. The results showed that the modification of fibers with stearic acid (STA) can improve the contact angle and hydrophobicity of bamboo fibers, so that for modified fibers with a concentration of 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Engineering, University of Liverpool, Liverpool, L69 3GH, United Kingdom.
Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.
Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.
Nanomaterials (Basel)
January 2025
Qiqihar Inspection and Testing Center, Qiqihar 161006, China.
Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that maintain a high contact angle. This review provides an in-depth analysis of recent advancements in the development of superhydrophobic paper-based materials, focusing on methodologies for modification, underlying mechanisms, and performance in various applications.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
School of Mechanical Engineering, University of Jinan, Jinan 250022, China.
This research centers around cast steel 20Mn, which is the material utilized for the ear-picking roller of a corn harvester. The study delves into methods of enhancing its hydrophobicity and wear resistance. Fiber laser-processing technology was employed to fabricate pangolin bionic micro-textures on the material surface, and PVD technology was utilized to deposit a TiN coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!