Ternary mixtures with the Soret effect are prone to triple-diffusive convection in a thermal field. The Soret coefficients of the toluene-methanol-cyclohexane mixture, measured in microgravity at a given composition [0.62-0.31-0.07] in mass fractions, showed that the net separation ratio, Ψ, the parameter responsible for the hydrodynamic stability in a gravity field is close to zero. Furthermore, the large cross-diffusion of toluene leads to a curious situation: the Soret coefficient S is positive while the thermodiffusion coefficient D is negative. The behavior of this ternary mixture on the border of stability, when Ψ is slightly negative or positive, is examined experimentally and numerically. The mixture is placed in an elongated cell between the differently heated walls. Depending on Ψ and the initial temperature of the liquid (mean temperature, linear profile or cold one), the evolution of concentration patterns are classified by four regimes. We observe the emergence of motionless, metastable, and convective patterns. In the case of Ψ > 0, it was found that cross-diffusion fluxes cause a temporarily unstable density pattern. The initially cold mixture at either Ψ sign shows dissimilar Soret separation in the upper and lower parts of the cell. It leads to the formation of a long-lived inverse density gradient at the upper part of the cell, which finally results in a motionless (Ψ > 0) or convective (Ψ < 0) pattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp06471h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!