Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Medical questionnaires are a valuable source of information but are often difficult to analyse due to both their size and the high possibility of them having missing values. This is a problematic issue in biomedical data science as it may complicate how individual questionnaire data is represented for statistical or machine learning analysis. In this paper, we propose a deeply-learnt residual autoencoder to simultaneously perform non-linear data imputation and dimensionality reduction. We present an extensive analysis of the dynamics of the performance of this autoencoder regarding the compression rate and the proportion of missing values. This method is evaluated on motor and non-motor clinical questionnaires of the Parkinson's Progression Markers Initiative (PPMI) database and consistently outperforms linear coupled imputation and reduction approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2021.102051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!