transformed carbon fibers/Al₂O₃ ceramic matrix nanocomposites with Cao-MgO-SiO₂ sintering agent were prepared by hot-pressed sintering technology in vacuum. In the sintering process, pre-oxidized polyacrylonitrile fibers (below named as pre-oxidized PAN fibers) were used as the precursors of transformed carbon fibers. The micro/nanostructure of composites and interface between transformed carbon fibers and matrix were investigated, as well as the properties of composites. The results showed that the composites could be sintered well at a relatively low temperature of 1650 °C. During the sintering, the precursors, pre-oxidized PAN fibers, were transformed into carbon fibers, and the transformed carbon fibers had the graphitelike structure along the fiber axial direction. The carbon atoms arrangement in the surface layer of the fiber was more orderly than the core. A typical diffraction peak of carbon fiber at 26°, which corresponded to the (002) crystal plane, was observed, and the inter-planar spacing was approximately 0.34 nm. The CaO-MgO-SiO₂ sintering agent formed MgAl₂O₄ and CaAl₂Si₂O phases in the interface between transformed carbon fibers and matrix, therefore improving the interface bonding, and thereby modifying the mechanical properties of the composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2021.19354 | DOI Listing |
Glob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute for Integrated Energy Systems at University of Victoria (IESVic), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
The world is increasingly facing the direct effects of climate change triggering warnings of a crisis for the healthy existence of humankind. The dominant driver of the climate emergency is the historical and continued accumulation of atmospheric CO altering net radiative forcing on the planet. To address this global issue, understanding the core chemistry of CO manipulation in the atmosphere and proximally in the oceans is crucial, to offer a direct partial solution for emissions handling through negative emissions technologies.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India. Electronic address:
Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.
View Article and Find Full Text PDFPLoS One
January 2025
College of Agriculture, Guizhou University, Guiyang, China.
The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!