A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nano-TiO₂ Reduces Testosterone Production in Primary Cultured Leydig Cells from Rat Testis Through the Cyclic Adenosine Phosphate/Cyclic Guanosine Phosphate/Epidermal Growth Factor Receptor/Matrix Metalloproteinase Signaling Pathway. | LitMetric

Nano-titanium dioxide (nano-TiO₂) has been shown to inhibit testosterone synthesis in male mice or rats; however, the mechanisms underlying these effects have yet to be elucidated. In this study, we investigated whether the inhibition of testosterone synthesis by nano-TiO₂ on Leydig cells (LCs) was related to the dysfunction of the cAMP/CGMP/EGFR/MMP signaling pathway in primary cultures of LCs prepared from rat testis exposed to nano-TiO₂. We found that the early apoptotic rate of LCs increased by 4.34 and 4.94 times, respectively, after exposure to 20 g/mL and 40 g/mL nano-TiO₂ ; we also found that NO increased by 1.1 and 2.86 times, respectively. ROS increased by times of 0.71, 3.15 and 3.43; RNS increased by 0.62, 1.34 and 1.14 times; and SOD activity decreased by 18.3%, 28.16%, and 67.6%, respectively, when the concentration of nano-TiO₂ was 10, 20 and 40 g/mL. These results indicated that nano-TiO₂ treatment resulted caused damage to the LCs, including an imbalance of oxidation and antioxidation. Following nano-TiO₂ treatment, the cAMP content had decreased by 48%, 48% and 47.6%; cGMP content had decreased by 18.7%, 52.2% and 56.7%; the levels of ATP in the LCs had decreased by 15.15%, 45.75% and 66.67%; the expression of HCGR protein had decreased by 26.7%, 45.07% and 74.64%; the expression of LHR protein had decreased by 18.3%, 28.16% and 67.6%; and the levels of T had decreased by 34.48%, 46.62% and 44.12%. Collectively, our results indicated that the inhibition of testosterone production by nano-TiO₂ is related to the dysfunction of the cAMP/CGMP/EGFR/MMP signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2021.3047DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
nano-tio₂
9
testosterone production
8
leydig cells
8
rat testis
8
testosterone synthesis
8
inhibition testosterone
8
dysfunction camp/cgmp/egfr/mmp
8
camp/cgmp/egfr/mmp signaling
8
decreased 183%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!