Background: Antimicrobial-resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public health, as strains resistant to at least one of the two last-line antibiotics used in empiric therapy of gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome sequencing (WGS) data can be used to identify new AMR clones and transmission networks and inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials and vaccines. Community-driven tools that provide an easy access to and analysis of genomic and epidemiological data is the way forward for public health surveillance.
Methods: Here we present a public health-focussed scheme for genomic epidemiology of N. gonorrhoeae at Pathogenwatch ( https://pathogen.watch/ngonorrhoeae ). An international advisory group of experts in epidemiology, public health, genetics and genomics of N. gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences from public archives has been quality-checked, assembled and made public together with available metadata for contextualization.
Results: AMR prediction from genome data revealed specificity values over 99% for azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public genomes showed the global expansion of an azithromycin-resistant lineage carrying a mosaic mtr over at least the last 10 years, emphasising the power of Pathogenwatch to explore and evaluate genomic epidemiology questions of public health concern.
Conclusions: The N. gonorrhoeae scheme in Pathogenwatch provides customised bioinformatic pipelines guided by expert opinion that can be adapted to public health agencies and departments with little expertise in bioinformatics and lower-resourced settings with internet connection but limited computational infrastructure. The advisory group will assess and identify ongoing public health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further enhance utility with modified or new analytic methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054416 | PMC |
http://dx.doi.org/10.1186/s13073-021-00858-2 | DOI Listing |
Am J Trop Med Hyg
December 2024
Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
To identify potential sources of hookworm infections in a Ghanaian community of endemicity that could be targeted to interrupt transmission, we tracked the movements of infected and noninfected persons to their most frequented locations. Fifty-nine participants (29 hookworm positives and 30 negatives) wore GPS trackers for 10 consecutive days. Their movement data were captured in real time and overlaid on a community grid map.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
Background: Although existing disease preparedness and response frameworks provide guidance about strengthening emergency response capacity, little attention is paid to health service continuity during emergency responses. During the 2014 Ebola outbreak, there were 11,325 reported deaths due to the Ebola virus and yet disruption in access to care caused more than 10,000 additional deaths due to measles, HIV/AIDS, tuberculosis, and malaria. Low- and middle-income countries account for the largest disease burden due to HIV, tuberculosis, and malaria and yet previous responses to health emergencies showed that HIV, tuberculosis, and malaria service delivery can be significantly disrupted.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Hospital Administration, Ramaiah Memorial Hospital, Bengaluru, Karnataka, India.
Background: Monitoring vital signs in hospitalized patients is crucial for evaluating their clinical condition. While early warning scores like the modified early warning score (MEWS) are typically calculated 3 to 4 times daily through spot checks, they might not promptly identify early deterioration. Leveraging technologies that provide continuous monitoring of vital signs, combined with an early warning system, has the potential to identify clinical deterioration sooner.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Institute of Nursing Science, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Background: Health care systems and the nursing profession worldwide are being transformed by technology and digitalization. Nurses acquire digital competence through their own experience in daily practice, but also from education and training; nursing education providers thus play an important role. While nursing education providers have some level of digital competence, there is a need for ongoing training and support for them to develop more advanced skills and effectively integrate technology into their teaching.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Vibrent Health, Inc, Fairfax, VA, United States.
Background: Longitudinal cohort studies have traditionally relied on clinic-based recruitment models, which limit cohort diversity and the generalizability of research outcomes. Digital research platforms can be used to increase participant access, improve study engagement, streamline data collection, and increase data quality; however, the efficacy and sustainability of digitally enabled studies rely heavily on the design, implementation, and management of the digital platform being used.
Objective: We sought to design and build a secure, privacy-preserving, validated, participant-centric digital health research platform (DHRP) to recruit and enroll participants, collect multimodal data, and engage participants from diverse backgrounds in the National Institutes of Health's (NIH) All of Us Research Program (AOU).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!