The challenges of combinatory immunotherapy for biliary tract cancer.

Expert Opin Investig Drugs

Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria.

Published: June 2021

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543784.2021.1916467DOI Listing

Publication Analysis

Top Keywords

challenges combinatory
4
combinatory immunotherapy
4
immunotherapy biliary
4
biliary tract
4
tract cancer
4
challenges
1
immunotherapy
1
biliary
1
tract
1
cancer
1

Similar Publications

Chronic infections represent a significant global health and economic challenge. Biofilms, which are bacterial communities encased in an extracellular polysaccharide matrix, contribute to approximately 80% of these infections. In particular, pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from the sputum of patients with cystic fibrosis and are commonly found in chronic wound infections.

View Article and Find Full Text PDF

Advanced genome engineering enables precise and customizable modifications of bacterial species, and toolsets that exhibit broad-host compatibility are particularly valued owing to their portability. Tn5 transposon vectors have been widely used to establish random integrations of desired DNA sequences into bacterial genomes. However, the iteration of the procedure remains challenging because of the limited availability and reusability of selection markers.

View Article and Find Full Text PDF

The objective of the max-cut problem is to cut any graph in such a way that the total weight of the edges that are cut off is maximum in both subsets of vertices that are divided due to the cut of the edges. Although it is an elementary graph partitioning problem, it is one of the most challenging combinatorial optimization-based problems, and tons of application areas make this problem highly admissible. Due to its admissibility, the problem is solved using the Harris Hawk Optimization algorithm (HHO).

View Article and Find Full Text PDF

Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over binary variables using only n qubits, with tunable k > 1.

View Article and Find Full Text PDF

Polarity Sensor Based on Multivariate Lanthanide Metal-Organic Framework for Constructing Biosensing Platform.

Anal Chem

January 2025

Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

It is significant but challenging to develop polarity sensors that can measure multiscenario polarity in a modular, customized, sensitive, and accurate manner. In this work, we proposed a polarity sensor based on multivariate lanthanide metal-organic framework (Ln-MOF) nanoclusters through the modular programming design of ligands. This multivariate Ln-MOF combines the advantages of modularity, ease of design, high flexibility and low cost, and can be precisely customized for different polarity systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!