Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293757 | PMC |
http://dx.doi.org/10.1177/24726303211008861 | DOI Listing |
Front Public Health
January 2025
Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Introduction: Diabetic retinopathy grading plays a vital role in the diagnosis and treatment of patients. In practice, this task mainly relies on manual inspection using human visual system. However, the human visual system-based screening process is labor-intensive, time-consuming, and error-prone.
View Article and Find Full Text PDFFront Comput Neurosci
January 2025
Data Science and Analytics Innovation Center, University of Missouri-Kansas City, Kansas City, MO, United States.
Ophthalmic Genet
January 2025
Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, N.Y, US.
Background: Retinoblastoma is diagnosed and treated without biopsy based solely on appearance (with the indirect ophthalmoscope and imaging). More than 20 benign ophthalmic disorders resemble retinoblastoma and errors in diagnosis continue to be made worldwide. A better noninvasive method for distinguishing retinoblastoma from pseudo retinoblastoma is needed.
View Article and Find Full Text PDFSci Rep
January 2025
Henan International Joint Laboratory of Machine Vision and Intelligent Systems, Department of Information Engineering, Pingdingshan University, Pingdingshan, 467000, Henan, China.
Accurate segmentation of power line targets helps quickly locate faults, evaluate line conditions, and provides key image data support and analysis for the safe and stable operation of the power system.The aerial power line in segmentation due to the target is small, and the imaging reflected energy is weak, so the Unmanned Aerial Vehicle (UAV) aerial power line image is very susceptible to the interference of the environment line elements and noise, resulting in the detection of the power line target in the image of the defective, intermittent, straight line interferences and other low accuracy and real-time efficiency is not high. For this reason, this paper designs a pure amplitude stretching kernel function to form a Fourier amplitude vector field and uses this amplitude vector field to implement the stretching transformation of the amplitude field of the aerial power line image, so that the angular field after the Fourier inverse transformation can better react to the spatial domain line targets, and finally, after the Relative Total Variation (RTV) processing, the power line can be well detected.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Background: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions.
Methods: This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!