In the field significant differences in maximum photosynthetic O -exchange rate (P ) were found between leaves of Mycelis muralis (L.) Dumort (Asteraceae) collected from woodland and exposed habitats, with the highest values in the exposed sites- However, there were no differences in the P of leaves collected from plants growing in grikes (fissures in the limestone pavement), of exposed limestone pavement, despite a greater than four-fold difference in the integrated daily irradiance. Leaves of plants from the open pavement had lower photon yields (ø ) and higher dark respiration rates and light compensation points, in comparison to shaded plants. Under controlled environmental conditions the highest P of leaves from plants subjected to variations in irradiance were found at the intermediate (8-6 mol photon m d growth light level used. At the highest growth irradiance 17.3 mol photon m d used in the laboratory both P and ø were reduced, although the latest plant biomass was found at this irradiance. No changes were found in the chlorophyll a:b ratio over the same range of irradiances. Examination of plant populations of M. muralis, collected from open or shaded habitats and exposed to growth irradiances that covered the range over which increases in photosynthesis were, observed in the laboratory (0.86-8.6 mol photon m d ), resulted in changes in leaf structure and pigment composition. The chlorophyll a:b ratio was low and largely independent of irradiance or the origin of the plant population. Differences in total chlorophyll content were small with the lowest values m the Durrow woodland populations at both irradiances. No variations were found in a number of chloroplast thylakoid structural features. In particular, the ratio of oppressed to non-appressed membranes was unchanged by growth at the two irradiances, consistent with an invariant chlorophyll a:b ratio. Based on peaks in the difference spectra the woodland populations had mi enhanced in vivo absorption at λlD= 650 and 706 nm when grown at low irradiance. These peaks were absent from the population collected from the open limestone pavement. The significance of the enhanced absorption at low irradiance and the possibility that these peaks represent long-wavelength forms of chlorophyll a (λlD = 706) and b (λlD = 650) is discussed. A particular feature of plants grown at high irradiance was an enhanced anthocyanin content in comparison to those grown at low irradiance. This was associated with an increase in absorptance. particularly in the green region (λlD = 550 nm) of the visible spectrum. Overall these results suggest that complete acclimation of photosynthesis and an ability to modulate light-harvesting is not a prerequisite, for success in a high light environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.1994.tb04287.x | DOI Listing |
Materials (Basel)
December 2024
College of Civil Science and Engineering, Yangzhou University, Yangzhou 225100, China.
Sci Rep
January 2025
School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.
View Article and Find Full Text PDFPLoS One
December 2024
Key Laboratory of Intelligent Construction and Maintenance of CAAC, Xi'an, Shaanxi, China.
This study aimed to investigate the influence of different coarse aggregate mineral compositions on the skid resistance performance of asphalt pavement. The imprint method was utilized to assess the contact probability between various graded asphalt surface aggregates and tires. Additionally, macroscopic adhesive friction coefficients between polished surfaces of three types of rock slabs (basalt, limestone, granite) and rubber were determined using a pendulum friction tester.
View Article and Find Full Text PDFData Brief
August 2024
Department of Civil Engineering, Queen's University Belfast, University Belfast, United Kingdom.
This data article presents details on the assessment of fracture parameters of laboratory asphalt mixtures produced using both natural and recycled concrete aggregates. The gap-graded stone matrix asphalt (SMA) is created by incorporating Trinidad Lake Asphalt (TLA) binder with carefully calibrated mixtures of recycled concrete aggregates (0 %, 10 %, 35 %, and 50 %) and natural aggregates (limestone and dust filler). The dataset variables were chosen based on the specifications of the single-edge notched beam (SENB) and semi-circular bending (SCB) tests, which are currently used for quality control and assurance (QC & QA) assessment of asphalt concrete mixtures.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China.
Incorporating iron tailings (ITs) into asphalt represents a new method for waste-to-resource conversion. The objective of this study is to evaluate the fatigue performance of ITs as fillers in asphalt mastic and investigate the interaction and interfacial adhesion energy between asphalt and ITs. To achieve that, the particle size distributions of two ITs and limestone filler (LF) were tested through a laser particle size analyzer; the morphology and structure characteristics were obtained by scanning electronic microscopy (SEM), the mineral compositions were conducted through X-ray diffraction (XRD), and the chemical compositions were tested through X-ray Fluorescence Spectrometer (XRF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!