CALEDONIAN SCOTS PINE: ORIGINS AND GENETIC STRUCTURE.

New Phytol

Forestry Commission, Northern Research Station, Roslin, Midlothian, Scotland.

Published: December 1986

Monoterpene and isozyme loci, used as markers to study the genetic structure of Scots pine (Pinus sylvestris L.) native to Scotland, showed that the endemic populations are not genetically impoverished, in spite of severe contraction in range and numbers as a result of both natural and anthropogenic causes. On the contrary, variability in the relict populations is almost the highest: of any plant species studied, with average heterozygosities of 0.33 for monoterpenes (rive loci) and 0.30 for isozymes (16 loci). The overwhelming proportion of this variability (> 95 %) was within populations, even though significant differences in gene frequencies of many individual loci existed among populations. Multiple-locus comparison of gene frequencies among populations, resolved by canonical variate analysis, showed no coherent geographic pattern of differences from population to population or region to region, with one major exception: certain populations in northwestern Scotland (Wester Ross) were distinct from all others and each other. The pattern of variability of the biochemical markers was consistent with that of metrical and physiological traits reported in the literature. These traits, in turn, show relatively little genetic affinity between contemporary Scottish and continental European populations. The genetic evidence, together with the anomalous distribution of pine pollen in the British Isles during the Holocene, suggests that the Caledonian race of Scots pine originated endemically from more than one refugium after the last glaciation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.1986.tb00671.xDOI Listing

Publication Analysis

Top Keywords

scots pine
12
genetic structure
8
gene frequencies
8
populations
7
caledonian scots
4
pine
4
pine origins
4
genetic
4
origins genetic
4
structure monoterpene
4

Similar Publications

Temperate grassland conversion to conifer forest destabilises mineral soil carbon stocks.

J Environ Manage

January 2025

Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.

Tree-planting is increasingly presented as a cost-effective strategy to maximise ecosystem carbon (C) storage and thus mitigate climate change. Its success largely depends on the associated response of soil C stocks, where most terrestrial C is stored. Yet, we lack a precise understanding of how soil C stocks develop following tree planting, and particularly how it affects the form in which soil C is stored and its associated stability and resistance to climate change.

View Article and Find Full Text PDF

Temporal dynamics of airborne fungi in Swedish forest nurseries.

Appl Environ Microbiol

January 2025

Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.

In Sweden, reforestation of managed forests relies predominantly on planting nursery-produced tree seedlings. However, the intense production using containerized cultivation systems (e.g.

View Article and Find Full Text PDF

Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.

View Article and Find Full Text PDF

This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O.

View Article and Find Full Text PDF

Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!