•  Previously we have cloned sucrose: fructan-6-fructosyltransferase (6-SFT) from barley (Hordeum vulgare) and proposed that synthesis of fructans in grasses depends on the concerted action of two main enzymes: sucrose: sucrose-1-fructosyltransferase (1-SST), as in other fructan producing plants, and 6-SFT, found only in grasses. •  Here we report the cloning of barley 1-SST, verifying the activity of the encoded protein by expression in Pichia pastoris. As expected, the barley 1-SST is homologous to invertases and fructosyltransferases, and in particular to barley 6-SFT. •  The gene expression pattern of 1-SST and 6-SFT, along with the corresponding enzyme activities and fructan levels, were investigated in excised barley leaves subjected to a light-dark regime known to sequentially induce fructan accumulation and mobilization. The turnover of transcripts and enzyme activities of 1-SST and 6-SFT was compared, using appropriate inhibitors. •  We found the 1-SST transcripts and enzymatic activity respond quickly, being subject to a rapid turnover. By contrast, the 6-SFT transcripts and enzymatic activity were found to be much more stable. The much higher responsiveness of 1-SST to regulatory processes, as compared with 6-SFT, clearly indicates that 1-SST plays the role of the pacemaker enzyme of fructan synthesis in barley leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2004.00995.xDOI Listing

Publication Analysis

Top Keywords

barley leaves
12
1-sst
10
sucrose sucrose-1-fructosyltransferase
8
sucrose-1-fructosyltransferase 1-sst
8
sucrose fructan-6-fructosyltransferase
8
6-sft
8
fructan-6-fructosyltransferase 6-sft
8
fructan synthesis
8
synthesis barley
8
barley 1-sst
8

Similar Publications

Intein-mediated split Cas9 for genome editing in plants.

Front Genome Ed

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia, China.

Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the transcript into two segments (Split-v1) and three segments (Split-v3).

View Article and Find Full Text PDF

Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance.

View Article and Find Full Text PDF

The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation.

View Article and Find Full Text PDF

Analysis of growth physiological changes and metabolome of highland barley seedlings under cadmium (II) stress.

Environ Pollut

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China. Electronic address:

This study aims to investigate the physiological changes in growth and metabolic response mechanisms of highland barley under different concentrations of cadmium. To achieve this, cadmium stress was applied to green barley at levels of 20, 40, and 80 mg/L. The results revealed that, under Cd(II) stress, the chlorophyll content and photosynthesis in leaves of highland barley seedlings were inhibited to some extent.

View Article and Find Full Text PDF

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!