Wanted: pathogenesis-related marker molecules for Fusarium oxysporum.

New Phytol

Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France.

Published: July 2003

Although Fusarium oxysporum pathogens cause severe wilts in about 80 botanical species, the mechanisms of pathogenicity and symptom induction are poorly understood. Knowledge about the genetic and biochemical pathways involved in the pathogenesis of F. oxysporum would be invaluable in getting targets for both fungicide development and search for biocontrol agents. In this respect, we described the main approaches that have been developed to identify some mechanisms underlying the pathogenesis of F. oxysporum. During the last decades, the potential functions triggering of F. oysporum pathogenicity have mainly been investigated by comparing soilborne pathogenic strains with nonpathogenic ones with regards to the analysis of the pre- and infection stages and of the resulting plant-fungus interactions. The relatively recent progress in the molecular biology of this fungus has allowed complementary approaches to be developed in order to identify key factors involved in F. oxysporum pathogenicity. Screening mutants of F. oxysporum for loss of virulence led to the successful identification of some pathogenesis-related factors, such as hydrophobicity or attachment of germlings. Taken together, the strategies described above support the idea that changes in fungal metabolism is also of importance in triggering of F. oxysporum pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1469-8137.2003.00795.xDOI Listing

Publication Analysis

Top Keywords

fusarium oxysporum
8
pathogenesis oxysporum
8
approaches developed
8
oxysporum
7
wanted pathogenesis-related
4
pathogenesis-related marker
4
marker molecules
4
molecules fusarium
4
oxysporum fusarium
4
oxysporum pathogens
4

Similar Publications

Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.

View Article and Find Full Text PDF

Molecular Identification and Antifungal Susceptibility of Fusarium spp. Clinical Isolates.

Mycoses

January 2025

Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

Background: Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST).

View Article and Find Full Text PDF

Comparative genomic analysis of Fusarium oxysporum f. sp. lycopersici reveals telomeric duplications of a lineage-specific region carrying SIX8 and PSL1 and genome-wide expansion of Foxy transposable elements.

Int J Biol Macromol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:

Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.

View Article and Find Full Text PDF

This study investigated soil fungal biodiversity in wheat-based crop rotation systems on Chernozem soil within the Pannonian Basin, focusing on the effects of tillage, crop rotation, and soil properties. Over three years, soil samples from ten plots were analyzed, revealing significant fungal diversity with Shannon-Wiener diversity indices ranging from 1.90 in monoculture systems to 2.

View Article and Find Full Text PDF

is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!