A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water-conducting cells. | LitMetric

•   Although histologically much simpler than higher plants, bryophytes display a considerable degree of tissue differentiation, notably in those groups that possess an internal system of specialized water-conducting cells (WCCs). Here, using a battery of monoclonal antibodies, we examined the distribution of cell wall polysaccharide and glycoprotein carbohydrate epitopes in the gametophyte of four hepatics and eight mosses, with special reference to water-conducting cells. •   CCRC-M7, an antibody against an arabinogalactan epitope, gave a highly consistent and generally specific labelling of WCCs; more variable results were obtained with other antibodies. The labelling patterns indicate that bryophytes exhibit cell and tissue complexity with respect to cell wall components on a par with higher plants. •   A remarkable diversity in the immunocytochemical characteristics of WCCs was observed not only when comparing major bryophyte groups but also within the relatively small and well-circumscribed moss order Polytrichales, indicating that the cell wall biochemistry of WCCs may have been finely tuned in response to specific evolutionary pressures. The immunocytochemical data strengthen the notion that the WCCs in Takakia are not homologous with the hydroids of other mosses nor with the WCCs in Haplomitrium and metzgerialean liverworts. •   The presence of several carbohydrate epitopes in hydroid walls runs strongly counter to the notion that their maturation involves hydrolysis of noncellulosic polysaccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1469-8137.2002.00538.xDOI Listing

Publication Analysis

Top Keywords

•  
16
water-conducting cells
12
cell wall
12
polysaccharide glycoprotein
8
cells •
8
higher plants
8
carbohydrate epitopes
8
wccs
6
cell
5
diversity distribution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!