• Primary cell walls (PCWs) of major vascular plant taxa were analysed as a contribution towards understanding wall evolution. • Alcohol-insoluble residues from immature shoots were acid- or enzyme-hydrolysed and the products analysed chromatographically and electrophoretically. • There were phylogenetic differences in abundance of mannose, galacturonate and glucuronate residues, mixed-linkage glucan (MLG) and tannins. Eusporangiate pteridophytes (lycopodiophytes, a psilotophyte, an equisetophyte and a eusporangiate fern) were richer in mannose than leptosporangiate ferns, gymnosperms and angiosperms. Galacturonate was always the most abundant uronate; glucuronate was not abundant in PCWs of vascular plants except angiosperms (especially monocots and some magnoliids). MLG was detected in the Poaceae and Flagellariaceae, but no other vascular plants. Proanthocyanidins were associated with PCWs from leptosporangiate ferns, gymnosperms and some angiosperms, but not eusporangiate pteridophytes. Xyloglucan was present in all vascular plants tested. • The results imply that major evolutionary changes in the PCW occurred not only during the charophyte-bryophyte and bryophyte-lycopodiophyte transitions but also after plants attained the vascular condition and upright growth habit, particularly during the eusporangiate-leptosporangiate transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2004.01146.x | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
School of Engineering, Dali University, Dali, Yunnan Province, China.
The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya, 42310, Türkiye.
Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!