A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated H NMR fingerprint with NIR spectroscopy, sensory properties, and quality parameters in a multi-block data analysis using ComDim to evaluate coffee blends. | LitMetric

Coffee quality is determined by several factors and, in the chemometric domain, the multi-block data analysis methods are valuable to study multiple information describing the same samples. In this industrial study, the Common Dimension (ComDim) multi-block method was applied to evaluate metabolite fingerprints, near-infrared spectra, sensory properties, and quality parameters of coffee blends of different cup and roasting profiles and to search relationships between these multiple data blocks. Data fusion-based Principal Component Analysis was not effective in exploiting multiple data blocks like ComDim. However, when a multi-block was applied to explore the data sets, it was possible to demonstrate relationships between the methods and techniques investigated and the importance of each block or criterion involved in the industrial quality control of coffee. Coffee blends were distinguished based on their qualities and metabolite composition. Blends with high cup quality and lower roasting degrees were generally differentiated from those with opposite characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.129618DOI Listing

Publication Analysis

Top Keywords

coffee blends
12
sensory properties
8
properties quality
8
quality parameters
8
multi-block data
8
data analysis
8
comdim multi-block
8
multiple data
8
data blocks
8
data
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!