A Humeomic fractionation revealed the humus molecular composition of two uncropped calcareous soils of Northern France and differentiated the soils Humeome by extracting humic components first unbound to the organo-mineral matrix and then liberated from their progressively stronger intermolecular and intramolecular ester and ether linkages. We separated organo- (ORG1-3) and water-soluble (AQU2 and AQU4) fractions, a final extractable fraction (RESOM) and soil residues. Organo-soluble fractions were studied by GC coupled with high-resolution mass spectrometry (GC/qTOF-MS), all fractions underwent mono- and two-dimensional liquid-state NMR (except for the iron-rich AQU4 fraction), while solid-state C-CPMAS-NMR spectroscopy analyzed soil residues. The Calcaric Leptosol (A) showed a larger mass extraction than the Calcaric Cambisol (B), and a greater cumulative C and N content in its Humeome. Both soils showed the greatest weight yield for AQU4 fraction, followed by ORG2, RESOM, ORG1, AQU2, and ORG3. ORG2 was the most differentiating fraction between the two soils for both compound concentration and diversity, showing a larger C content for soil A than for soil B and a different distribution in aromatic compounds, fatty acids, and dicarboxylic acids. No significant differences between soils were found for ORG 3, suggesting similar processes of OM stabilization for its recalcitrant components, mostly hydrophobic esters of alkanoic, hydroxy, and aromatic acids with linear alkanols. We confirmed that Humeomic fractionation coupled to advanced analytical instrumentations enabled a detailed molecular characterization of the soil Humeome and differentiated between the two calcareous grassland soils and the other soils previously subjected to Humeomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.130518 | DOI Listing |
PhytoKeys
January 2025
Botany Unit, Pharmacy Building, University Complutense of Madrid, E-28040 Madrid, Spain University Complutense of Madrid Madrid Spain.
A new species of () is described from the calcareous, high-mountain Spanish flora in the central part of the Iberian Peninsula. It is found in a Mediterranean climate at high-elevation, perennial, calcareous grasslands, as well as in marble screes of anthropogenic origin in the Sierra de Guadarrama, Central System (Spain), in a reserve area within the Sierra de Guadarrama National Park, at 1996 m asl. Taxonomic morphological measurements were performed on collected specimens from Sierra de Guadarrama as well as on geographically-adjacent (i.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
Grassland restoration is an important conservation intervention supporting declining insect pollinators in threatened calcareous grassland landscapes. While the success of restoration is often quantified using simple measures of diversity or similarity to target communities, these measures do not capture all fundamental aspects of community reconstruction. Here, we develop species-habitat networks that aim to define habitat-level foraging dependencies of pollinators across restored grassland landscapes and compare their value to these more conventional measures of community restoration.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland. Electronic address:
Green roofs and walls offer many benefits, not only in terms of the ecosystem services, but also in terms of improving building performance. The growing medium is the most important component of green roofs and walls. It should ensure stable plant growth with minimal maintenance and the proper choice is crucial for the survival and performance of the vegetation.
View Article and Find Full Text PDFOecologia
January 2025
Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!