A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deciphering influences of testosterone and dihydrotestosterone on lipid metabolism genes using brown trout primary hepatocytes. | LitMetric

Deciphering influences of testosterone and dihydrotestosterone on lipid metabolism genes using brown trout primary hepatocytes.

Aquat Toxicol

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal.

Published: June 2021

Despite of physiological and toxicological relevance, the potential of androgens to influence fish lipid metabolism remains poorly explored. Here, brown trout primary hepatocytes were exposed to six concentrations (1 nM to 100 μM) of dihydrotestosterone (DHT) and testosterone (T), to assess changes in the mRNA levels of genes covering diverse lipid metabolic pathways. Acsl1, essential for fatty acid activation, was up-regulated by T and DHT, whereas the lipogenic enzymes FAS and ACC were up-regulated by the highest (100 μM) concentration of T and DHT, respectively. ApoA1, the major component of high-density lipoprotein (HDL), was down-regulated by both androgens. PPARγ, linked to adipogenesis and peroxisomal β-oxidation, was down-regulated by T and DHT, while Acox1-3I, rate-limiting in peroxisomal β-oxidation, was down-regulated by T. Fabp1, StAR and LPL were not altered. Our findings suggest that androgens may impact on lipid transport, adipogenesis and fatty acid β-oxidation and promote lipogenesis in fish liver.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105819DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
8
brown trout
8
trout primary
8
primary hepatocytes
8
fatty acid
8
peroxisomal β-oxidation
8
β-oxidation down-regulated
8
deciphering influences
4
influences testosterone
4
testosterone dihydrotestosterone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!