Pelagic stocks and carbon and nitrogen uptake in a pearl farming atoll (Ahe, French Polynesia).

Mar Pollut Bull

Institut de Recherche pour le Développement, US 191 IMAGO, BP A5, 98848 Nouméa cedex, New-Caledonia, France. Electronic address:

Published: June 2021

This study reports the first measurements of nitrogen uptake and new data on carbon fixation (N/C incorporation) for two size-fractionated phytoplankton (<2 μm and >2 μm), on organic matter, and phytoplankton stocks in Ahe lagoon. Data were collected between November and December 2017, during the hot season with prevailing trade winds. Ammonium and nitrate uptake data (7.58 to 39.81 and 1.80 to 21.43 μmol N m h, respectively) suggest a rapid turn-over of N-nutrients in the water column and show that primary production was largely sustained by recycled nitrogen providing 68% of the pelagic N demand. These results highlight the spatial heterogeneity of the measured processes linked to the local hydrodynamics, exhibiting higher regenerated production in the more exploited southwestern part of the lagoon and a higher proportion of new production in the north. Intense nutrient recycling appears to promote nanophytoplankton production which is critical for pearl oyster growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.112352DOI Listing

Publication Analysis

Top Keywords

nitrogen uptake
8
uptake data
8
pelagic stocks
4
stocks carbon
4
carbon nitrogen
4
uptake pearl
4
pearl farming
4
farming atoll
4
atoll ahe
4
ahe french
4

Similar Publications

Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.

View Article and Find Full Text PDF

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.

View Article and Find Full Text PDF

Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.

View Article and Find Full Text PDF

Highly effective adsorbents, with their impressive adsorption capacity and outstanding selectivity, play a pivotal role in technologies such as carbon capture and utilization in industrial flue gas applications, leading to significant reductions in greenhouse gas emissions. This study aims to synthesize advanced composites via solvothermal methods, incorporating a defective Zirconium-based MOF and amine-functionalized graphene oxide. The main objective is to enhance the CO adsorption capacity of the composite and improve its CO/N separation selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!