Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Coherence between the hippocampus and other brain structures has been shown with the theta frequency (3-8 Hz). Cortical decreases in theta coherence are believed to reflect response accuracy efficiency. However, the role of theta coherence during conflict resolution is poorly understood in noncortical areas. In this study, coherence between the hippocampus and orbitofrontal cortex (OFC) was measured during a conflict resolution task. Although both brain areas have been previously implicated in the Stroop task, their interactions are not well understood.
Methods: Nine patients were implanted with stereotactic electroencephalography contacts in the hippocampus and OFC. Local field potential data were sampled throughout discrete phases of a Stroop task. Coherence was calculated for hippocampal and OFC contact pairs, and coherence spectrograms were constructed for congruent and incongruent conditions. Coherence changes during cue processing were identified using a nonparametric cluster-permutation t test. Group analysis was conducted to compare overall theta coherence changes among conditions.
Results: In 6 of 9 patients, decreased theta coherence was observed only during the incongruent condition (P < 0.05). Congruent theta coherence did not change from baseline. Group analysis showed lower theta coherence for the incongruent condition compared with the congruent condition (P < 0.05).
Conclusions: Theta coherence between the hippocampus and OFC decreased during conflict. This finding supports existing theories that theta coherence desynchronization contributes to improved response accuracy and processing efficiency during conflict resolution. The underlying theta coherence observed between the hippocampus and OFC during conflict may be distinct from its previously observed role in memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338769 | PMC |
http://dx.doi.org/10.1016/j.wneu.2021.04.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!