Mesothelioma is a highly aggressive cancer of the mesothelial lining that is caused by exposure to asbestos. Surgical resection followed by chemotherapy is the current treatment strategy, but this is marginally successful and leads to drug-resistant disease. We are interested in factors that maintain the aggressive mesothelioma cancer phenotype as therapy targets. Protein arginine methyltransferase 5 (PRMT5) functions in concert with the methylosome protein 50 (MEP50) cofactor to catalyze symmetric dimethylation of key arginine resides in histones 3 and 4 which modifies the chromatin environment to alter tumor suppressor and oncogene expression and enhance cancer cell survival. Our studies show that PRMT5 or MEP50 loss reduces H4R3me2s formation and that this is associated with reduced cancer cell spheroid formation, invasion, and migration. Treatment with sulforaphane (SFN), a diet-derived anticancer agent, reduces PRMT5/MEP50 level and H4R3me2s formation and suppresses the cancer phenotype. We further show that SFN treatment reduces PRMT5 and MEP50 levels and that this reduction is required for SFN suppression of the cancer phenotype. SFN treatment also reduces tumor formation which is associated with reduced PRMT5/MEP50 expression and activity. These findings suggest that SFN may be a useful mesothelioma treatment agent that operates, at least in part, via suppression of PRMT5/MEP50 function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074327 | PMC |
http://dx.doi.org/10.1002/mc.23301 | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Plant Sciences, School of Life Sciences University of Hyderabad PO Central University Gachibowli, Hyderabad Telangana, 500046, India. Electronic address:
Purpose: Histone methyltransferases are enzymes that selectively methylate lysine or arginine residues on both histone and non-histone proteins, categorized into lysine methyltransferases and arginine methyltransferases. Notably, EZH2 and PRMT5 are known for catalyzing trimethylation of H3 at K27 and symmetric dimethylation of H4 at R3, respectively. These methylation events are recognized as characteristic histone-repressive marks in cancer.
View Article and Find Full Text PDFGut
December 2024
Hepatology, CIMA-University of Navarra, Pamplona, Spain
Background: Cholangiocarcinoma (CCA) is a very difficult-to-treat cancer. Chemotherapies are little effective and response to immune checkpoint inhibitors is limited. Therefore, new therapeutic strategies need to be identified.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
August 2024
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China.
Methylosome protein 50 (Mep50) is a protein that is rich in WD40 domains, which mediate and regulate a variety of physiological processes in organisms. Previous studies indicated the necessity of Mep50 in embryogenesis in mice Mus musculus and fish. This study aimed to further understand the roles of maternal Mep50 in early embryogenesis using medaka Oryzias latipes as a model.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan.
N-myc downstream-regulated gene 2 (NDRG2), which is a tumour suppressor, is frequently lost in many types of tumours, including adult T-cell leukaemia/lymphoma (ATL). The downregulation of NDRG2 expression is involved in tumour progression through the aberrant phosphorylation of several important signalling molecules. We observed that the downregulation of NDRG2 induced the translocation of protein arginine methyltransferase 5 (PRMT5) from the nucleus to the cytoplasm via the increased phosphorylation of PRMT5 at Serine 335.
View Article and Find Full Text PDFCancer Sci
May 2024
Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Both lysine and arginine methyltransferases are thought to be promising therapeutic targets for malignant tumors, yet how these methyltransferases function in malignant tumors, especially hepatocellular carcinoma (HCC), has not been fully elucidated. Here, we reported that SMYD4, a lysine methyltransferase, acts as an oncogene in HCC. SMYD4 was highly upregulated in HCC and promoted HCC cell proliferation and metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!