Bacterial persistence is a potential cause of antibiotic therapy failure. Antibiotic-tolerant persisters originate from phenotypic differentiation within a susceptible population, occurring with a frequency that can be altered by mutations. Recent studies have proven that persistence is a highly evolvable trait and, consequently, an important evolutionary strategy of bacterial populations to adapt to high-dose antibiotic therapy. Yet, the factors that govern the evolutionary dynamics of persistence are currently poorly understood. Theoretical studies predict far-reaching effects of bottlenecking on the evolutionary adaption of bacterial populations, but these effects have never been investigated in the context of persistence. Bottlenecking events are frequently encountered by infecting pathogens during host-to-host transmission and antibiotic treatment. In this study, we used a combination of experimental evolution and barcoded knockout libraries to examine how population bottlenecking affects the evolutionary dynamics of persistence. In accordance with existing hypotheses, small bottlenecks were found to restrict the adaptive potential of populations and result in more heterogeneous evolutionary outcomes. Evolutionary trajectories followed in small-bottlenecking regimes additionally suggest that the fitness landscape associated with persistence has a rugged topography, with distinct trajectories toward increased persistence that are accessible to evolving populations. Furthermore, sequencing data of evolved populations and knockout libraries after selection reveal various genes that are potentially involved in persistence, including previously known as well as novel targets. Together, our results do not only provide experimental evidence for evolutionary theories, but also contribute to a better understanding of the environmental and genetic factors that guide bacterial adaptation to antibiotic treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321523 | PMC |
http://dx.doi.org/10.1093/molbev/msab107 | DOI Listing |
Ann Bot
January 2025
Key Laboratory of Biodiversity Science and Ecological Engineering of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
Background And Aims: Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favorable environments likely have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors with relatively low habitat suitability.
View Article and Find Full Text PDFEvol Appl
January 2025
Save Our Seas Foundation Shark Research Center, Halmos College of Arts & Sciences Nova Southeastern University Dania Florida USA.
Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
Influenza A virus (IAV) continuously threatens animal and public health globally, with swine serving as a crucial reservoir for viral reassortment and evolution. In Chile, H1N2 and H3N2 subtypes were introduced in the swine population before the H1N1 2009 pandemic, and the H1N1 was introduced from the H1N1pdm09 by successive reverse zoonotic events. Here, we report two novel introductions of IAV H3N2 human-origin in Chilean swine during 2023.
View Article and Find Full Text PDFBioscience
May 2024
Climate Change Institute, School of Biology and Ecology, University of Maine, Orono, Maine, United States.
The competitive success of ferns has been foundational to hypotheses about terrestrial recolonization following biotic upheaval, from wildfires to the Cretaceous-Paleogene asteroid impact (66 million years ago). Rapid fern recolonization in primary successional environments has been hypothesized to be driven by ferns' high spore production and wind dispersal, with an emphasis on their competitive advantages as so-called disaster taxa. We propose that a competition-based view of ferns is outdated and in need of reexamination in light of growing research documenting the importance of positive interactions (i.
View Article and Find Full Text PDFBMC Biol
January 2025
Department of Biology, Section of Zoophysiology, Aarhus University, Aarhus, 8000, Denmark.
Background: Echolocating bats face an intense arms race with insect prey that can detect bat calls and initiate evasive maneuvers. Their high closing speeds and short biosonar ranges leave bats with only a few 100 ms between detection and capture, suggesting a reactive sensory-motor operation that might preclude tracking of escaping prey. Here we test this hypothesis using greater mouse-eared bats (Myotis myotis) as a model species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!