Polystannoles with thienyl co-monomers are in many ways similar to polythiophenes, but they display much reduced band gaps. However, their polymerization processes are not well researched. Thiophene can be oxidatively electropolymerized, but as stannoles are organometallic, the fundamental question arises whether their inclusion in a conjugated backbone can protect them sufficiently to be able to perform an oxidative electropolymerization. As well-defined oligothiophenes can be used as models to understand the optical and electronic properties of polythiophenes, we transposed this concept on stannole containing polymers; therefore we synthesized a monomeric 1 and dimeric thiophene-flanked stannole 2 and investigated their optoelectronic properties comparatively including polystannoles and the corresponding oligothiophenes in our analysis. With respect to monomer 1, a significantly redshifted absorption (λmax = 510 nm, Δ = 93 nm) and a small optical band gap (Eg,opt(2) = 2.13 eV), close to the bandgap of polymeric stannoles, was observed. In comparison to oligothiophenes, these thienyl-flanked stannoles exhibited a redshift in absorption and emission as well as a lower oxidation potential. Despite these differences, they showed an oligothiophene-like electrochemical behavior. Stannole 1 and the dimer 2 were subjected to an electropolymerization process. This process was investigated in detail by spectroelectrochemical methods which showed that radical cation species were formed in situ but readily decomposed. Nevertheless, under the milder multiscan cyclovoltammetric conditions, electropolymerization occurred as shown by cyclovoltammetry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt00565k | DOI Listing |
J Phys Chem Lett
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, China.
Two-dimensional (2D) black arsenic phosphorus (b-AsP) material has been attracting considerable attention for its extraordinary properties. However, its application in large-scale device fabrication remains challenging due to the limited scale and irregular shape. Here, we found the special effect of Te upon growth of b-AsP and developed a novel Te-regulated steady growth (Te-SG) strategy to obtain high-quality b-AsP single crystal.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany.
Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereochemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Reasonable design of hydrogen evolution reaction (HER) electrocatalysts with low Pt loading and excellent catalytic performance is a key challenge in finding efficient and cost attractive catalysts. Pt with its unique d-electrons provides new opportunities for the development of HER catalysts when it forms compounds with highly earth-abundant C. Herein, we focused on designing highly efficient catalysts composed of Pt and C elements using first-principles structure search simulations, identifying four stability PtC monolayers.
View Article and Find Full Text PDFAll-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
CsSbBr, as a sort of novel lead-free perovskite single crystal, has the merits of high carrier mobility and a long diffusion length. However, the large-sized and high-crystallized CsSbBr single crystals are not easily obtained. Herein, we apply the vertical Bridgman method to grow centimeter-sized CsSbBr single crystal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!