Biomimetic matrices offer a great advantage to understand several biological processes including regeneration. The study involves the development of a hybrid biomimetic scaffold and the uniqueness lies in the use of mucin, as a constituent protein. Through this study, the role of the protein in bone regeneration is deciphered through its development as a 3D model. As a first step towards understanding the protein, the interactions of mucin and collagen are determined by in silico studies considering that collagen is the most abundant protein in the bone microenvironment. Both proteins are reported to be involved in bone biology though the exact role of mucin is a topic of investigation. The in silico studies of collagen-mucin suggest to have a proper affinity toward each other, forming a strong basis for 3D scaffold development. The developed 3D scaffold is a double network system comprising of mucin and collagen and vinyl end functionalized polyethylene glycol. In situ deposition of mineral crystals has been performed enzymatically. Biological evaluation of these mineral deposited scaffolds is done in terms of their bone regeneration potential and a comparison of the two systems with and without mineral deposition is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202000381 | DOI Listing |
Histochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFJ Exp Med
March 2025
Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.
View Article and Find Full Text PDFClin Transl Med
January 2025
Vascular Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.
Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.
J Biomed Mater Res A
January 2025
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Orthopaedics, Shaanxi Rehbilitation Hospital, Xi'an, Shaanxi, China.
Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!